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It is demonstrated that a quasistatic slider model with two state-variable 
rate and state dependent friction shows chaotic dynamics in the deterministic 
sense. The irregular system behavior can be reduced to a one-dimensional, 
unilnodal mapping which explains the existence of universal period doubling 
sequences in the stick-slip cycles en route to chaos. This property further- 
more allows the approximate prediction of time intervals between sliding 
events. Lyapunov exponents and periodogram branches depend on the con- 
trol parameter, the load point coupling, in a self-similar way. Thus, the single 
slider is a good example of low-dimensional chaos in a homogeneous system, 
possibly implying a microscopic soume of irregularity for earthquakes in na- 
ture. However, the sliding patterns of interacting slider models are found 
to be dominated by perturbation wave phenomena. The wavelength of the 
asperities that are formed along a slider chain ("fault") increases with the 
strength of the spring coupling between sliders. This could imply a regular- 
izing effect of interactions, but instabilities prohibit the exploration of the 
full parameter range for coupled sliders without damping. 
1. INTRODUCTION 

Laboratory rock sliding experiments initiated by Di- 
eterich [1979] and Ruina [1980] have led to the estab- 
lishment of semi-empirical laws that describe the depen- 
dence of the friction coefficient on the rate and history 
of sliding. These "rate and state dependent" laws can 
explain most of the laboratory observations for a range 
of materials and parameters [for a recent review, see 
Marone, 1998], and there has been progress in the ap- 
plication to seismicity in nature [e.g., Dieterich, 1994; 
$cholz, 1998]. Yet, it is still not entirely clear if and 
how the microscopic results from sample sizes of. O(cm) 
and sliding velocities of O(y,m/s) can be scaled to real 
faults with lengths of O(km) and speeds of O(m/s) [e.g., 
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Schmittbuhl et al., 1996]. However, I will proceed to 
examine rate and state friction under the assumption 
that these laws are also relevant for seismicity in nature. 
Only simplified quasistatic slider models and elastic in- 
teractions will be considered. My models, therefore, 
do not capture all important processes for faulting in 
nature, but this simplicity will allow us to gain some 
physical insight into what lnight be a part of the com- 
plex earthquake system. 

In the laboratory experiments, complicated stick-slip 
sequences have been studied in which slow shear stress 
increases and vanishing sliding velocities alternate with 
rapid stress drop and slip. The underlying sliding and 
history dependence of the friction coefficient, which was 
formerly reduced to a "static" and a "dynamic" value, 
can be studied as a microscopic source leading to the 
observed seismic cycles in fault zones in nature [e.g., 
Rice and Tse, 1986]. Usually, one "state-variable" laws 
suffice to explain the observed deviations from the tra- 
ditional concept of static and dynamic friction. 
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simplest mathematical model which mimics stick-slip 
with one state-variable friction is a one degree of free- 
dom slider that is spring-coupled to a steadily progress- 
ing load point. When inertia is neglected, the resulting 
quasistatic system of non-linear, ordinary differential 
equations is two-dimensional (2-D), i.e., it is fully de- 
termined by two initial conditions, for example, stress 
and sliding velocity. 

The linear and non-linear stability of this slider sys- 
tem with respect to perturbations has been studied pre- 
viously JR'ice and Ruina, 1983; Gu et al., 1984; Cornberg 
et al., 1998; Ran. fith and Rice, 1999], and I will con- 
sider these equations as a starting point for slightly in- 
creased complexity. More complicated system behavior 
can arise when inertia [e.g., Rice and Tse, 1986], con- 
tinuum interactions [e.g., Horowitz and Ruina, 1989], or 
a second state-variable [Gu et al., 1984; Gu and Wong, 
1994; Zhiren and Chen, 1994] are considered. The latter 
approach results in the introduction of one additional 
degree of freedom, and it seems that this is required 
by some laboratory observations [e.g., Ruina, 1980; Di- 
eter•ich, 1981; Gu et al., 1984; Blanpied and Tullis, 1986; 
Gu and Wong, 19941 which show that a single state- 
variable friction law might be insufiicicnt to interpret 
the data. 

Here I will focus on a quasistatic slider model with 
two state-variables so that the effect of this constitu- 

rive relation can be studied in isolation from other pro- 
cesses such as dissipation or the effect of inertia. Also, 
I will not be considering pre-existing heterogeneities, 
be it in the initial conditions (pre-loading) or the 
terial properties. Mathematically, the resulting three 
dimensional (3-D) phase space dynamics are no longer 
limited to fixed points (corresponding to stable sliding 
in the rock friction experiments) or limit cycle oscil- 
lations (stick-slip "carthquakcs"). It was notcd earlier 
that friction measurements from the laboratory and the 
corrcsponding numerical models show period doubling 
cascadcs toward irregularity for certain parameter val- 
ues [Ruina, 1983; Gu et al., 1984; Cu and Wong, 1994]. 
More recently, Z,5iren and Chen [1994] studied a two 
state-variable slider numerically and suggested that the 
irregular state which is reached by successive period 
doubling bifurcations might be chaotic. However, they 
failed to demonstrate quantitative period doubling con- 
clusively. 

This paper will show how the irregular system be- 
havior of a one slider, quasistatic, two state-variable 
system can be quantified and how certain parameter 
settings can lead to chaos in the strict deterministic 
sense. Further, it will be demonstrated that the 3-D 

dynamics of the chaotic state can be reduced to a one 
dimensional, unimodal mapping. This allows the 
proximate prediction of the time intervals between slid- 
ing events. As shown by Feigenbaurn [1978], the ex- 
istence of this low-dimensional structure is the reason 

that a universal period doubling route is realized. The 
convergence of the control parameter intervals for bi- 
furcations is extracted using "periodograms" that are 
derived from Poincare sections of the phase space. The 
resulting plots resemble those for the logistic map [e.g., 
ilia.t/, 1976] and demonstrate peculiar features of non- 
linear dynamics such as universal period doubling cas- 
cades and intermittent period-three windows. Both the 
period bifurcations and the Lyapunov exponents de- 
pend on the controlling load point stiffness in a self- 
similar way. The slider system thus turns out to be a 
good example of low-dimensional deterministic chaos. 
However, when next-neighbor interactions for coupled 
sliders are taken into account, the resulting perturba- 
tion waves dominate the sliding heterogeneities, and 
regularizing effect is observed with increasing coupling 
stiffness. 

2. THEORETICAL BACKGROUND 

This section will discuss the mathematical properties 
and governing equations of the quasistatic two state- 
variable slider model and briefly review some measures 
of irregularity in non-linear dynamical systems. 

2.1. Model Definition 

We, can write a constitutive law for rock interface fric- 

tion at constant normal stress in terms of the shear 

stress, •-, as a function of sliding velocity, V, and two 
"state-variables", 0• and 02: 

2 

i=1 

(1) 

The material and environment (e.g., temperature and 
gouge width) dependent parameters A and Bi con- 
trol the character of the velocity dependence of fric- 
tion (weakening or strengthening), and the critical slip 
lengths, Li, are relevant for stability. For simplicity, we 
assume A, Bi, and Li are constant. Further, V, and •-, 
denote a reference velocity and stress respectively, and 
the 0i as well as V depend on time, t. When the fric- 
tion law is cast in the form of eq. (1), the 
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BECKER 7 

can be interpreted as average contact lifetimes for slid- 
ing surface roughness. The Oi were introduced by the 
experimenters to fit, the observed exponential decay pro- 
cesses together with an evolution law like: 

dOi l/Oiln(VOi) (2) -77 ' 

where we have used the R uina ("slip") version [see, e.g., 
]liarone, 1998, for discussion 1. Inertia-free load point 
coupling with fixed load point, velocity 1• and coupling 
stiffness K > 0 can be written as: 

dr 

d! K(V0 - V), (3) 
and completes our model equation system for stick-slip 
(see Figure 1). 

We can non-dimensionalize eqs. (1), (2), and (3) by 
introducing the following variables [slightly modified 
from Gu et al. , 1984]' 

x -- In V•, Y = 
Bi 

.•i n -- 
A 

z--•21n(1/•02) L2 P -- 
T 

A 

KL• 
A 

L• 

L2 

V*t. 
L• 

The resulting equations that constitute our model are: 

t9 - e x((/•x-1)x+y-z)+•-z; (4) 
•0- (1-ex)n (5) 

- (6) 

where dotted quantities are derived with respect to 
rescaled time T, and we have set the load point ve- 
locity V0 to V, without loss of generality. Equations (4) 
to (6) describe the friction system in terms of the non- 
dimensionalized quantities velocity, x, stress, y, and sec- 
ond state-variable, z. In shorthand we can write 

5c--F(x) with x-(x,y,z). (7) 

Gu et al. [1984] state that the choice 

•--1 /32-0.84 and p-0.048 (8) 

for three of the four remaining free parameters is appro- 
priate to reproduce experiments of Ruina [1980]. Keep- 
ing these numbers fixed, the system behavior for a cer- 
tain initial value is fully characterized by the control 

'!•= • g•01,02) 

K 
Vo 

Figure 1. Cartoon of the one degree of freedom slider sys- 
tem. The block is pulled at constant rate V0 and the friction 
at the contact interface follows a two state-variable rate and 

state dependent law. 

parameter, the non-dimensionalized stiffness n. 
2.1.1. Stability. The steady state for the model sys- 

tem corresponds to a fixed point in phase space for x, 
and the only solution to 

F(x) -- 0 (9) 

is x -- 0 with the physical interpretation of steady slid- 
ing along at the speed of the load point. Rice and Ruina 
[1983] give a general criterion for the linear stability of 
this fixed point for a class of rate and state type fric- 
tion systems. Let us consider constant load point ve- 
locity, x - 0 (corresponding to slow aseismic creep of 
a fault), and a sudden perturbation in sliding speed, x, 
say due to a passing seismic wave. For very stiff cou- 
pling with large values of n, x = 0 is a linearly stable 
state and small perturbations will die out. Yet, when 
n is decreased below a critical value, nor, the system 
undergoes a Hopf bifurcation. This means that the spi- 
raling attraction of the fixed point is transformed into a 
limit cycle, and further to a repelling spiral where small 
perturbations from x: 0 move away froin the origin 
without bounds. The system has then become unstable. 

Gu et al. [1984] have applied Rice and Ruina [1983]'s 
criterion to eqs. (4) to (6) and discuss several general 
properties of the two state-variable friction law. Here, 
I will only state that their formula for the critical stiff- 

(2) translates to my scaling as ness, ncr, 

(n::' + p2(.2 - 1))2 }•] / [2 + 2p]. (10) 
n[} ) denotes the critical stiffness of a one state-variable 
law 

•[};- •x - 1 (11) 
and eq. (10) transforms into eq. (11) for p : 1 and 
•2 = O. All control parameter values in this paper 

 10.1029/G
M

120p0005, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/G

M
120p0005 by T

horsten B
ecker - U

niversity O
f T

exas L
ibraries , W

iley O
nline L

ibrary on [21/10/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

twb
Sticky Note
Misprinted: times, "x", symbol here should be a plus, "+"



8 CHAOS IN FRICTION 

be given in dimensionless form as a fraction of the crit- 
ical stiffness 

. 

where •(•2•) • 0.08028 for the choice of parameters (8). 
Only the normalized quantity •' is independent of any 
non-dimensionalization scheme and 

(13) 

is the condition for a linearly unstable system. 
There has not been a comprehensive parameter study 

for the two state-variable quasistatic slider equations 
yet, although Blanpied and Tullis [1986] explored sta- 
bility surfaces and Gu and Wong [1994] conducted a 
range of laboratory and numerical experiments. It is 
thus not clear if the system properties under considera- 
tion here are general, intrinsic features or if they depend 
strongly on the fine tuning. In addition, other issues 
such as the quest for the right evolution law (eq. (2)) 
remain unresolved [e.g., ]liarone, 1998]. At this stage, it 
seems reasonable to be foremost consistent with the lit- 

erature [Gu et al., 1984], and I will assume that generic 
aspects of the friction law (eq. (1)) are captured by the 
particular parameter choice (8). 

2.1.2. Numerical irn,plementation. A step size con- 
trolled Cash-Karp Runge-Kutta scheme [Press et al., 
1993] was used to solve the system of equations numer- 
ically. The integration routine has been benchmarked, 
was compiled at double precision machine number rep- 
resentation, and set to a precision better than 10 -8 and 
an accuracy better than 10 -7 for single and coupled 
sliders respectively. 

2.2. Measures of the Irregular System State 

Various tools have been developed to quantify the ir- 
regularity of non-linear dynamical systems such as the 
one realized by our set of model equations [e.g., Ott, 
1993]. Changes in the system variables with time can 
be described as Lagrangian flow of state points forming 
a trajectory in phase space from x to x •. Calculating 
Lyapunov exponents for that flow then gives: a) a de- 
scription of the dynamic stretching of a small sphere of 
radius r0 around any initial condition x0, and, by in- 
ference, b) a way to determine the dimensionality of an 
attracting limit object if such a thing exists for bounded 
trajectories. 

Considering a) first, the vigor of mixing and stretch- 
ing of the initial conditions-sphere tells us about the 
irregularity of the system evolution from different start- 
ing points. The time evolution of the major axes 
(eigendirections) ri of the ellipsoid that results from 

stretching in a 3-D flow can be written in the Floquet 
form as: 

ri(T) cr ro exp(hiT) with i: 1, 2, 3. (14) 

This defines the Lyapunov exponents hi, so that 

T_• • In . (15) r0 

We will sort according to h• > h2 > h3. Under the as- 
sumption that the system is ergodic, the time-averaging 
of eq. (15) should be equivalent to an ensemble average 
over different initial conditions x0, and the values for 
hi are taken as representative of the flow in general. 
h• > 0 corresponds to exponentially fast divergence of 
initial conditions in one direction, the so called "butter- 
fly effect". 

When the system equations are known the hi can be 
approximated by averaging the singular values of the 
Jacobian matrix which gives a linearized version of the 
flow F(x). Since the properties of the system lead to 
rapid growth and st•rinkage of matrix elements, a nu- 
merical realization of this method has to include fre- 

quent re-normalization to obtain accurate results. An 
alternative approach to quantify stretching has become 
standard and was proposed by Benettin et al. [1980]: 
for 3-D, the scheme is based on tracking the evolution 
of three orthogonal vectors, Yi, which can be approxi- 
mated by 

•i(T) = Jlx(•')yi(T) with i: 1, 2, 3, (16) 

where is the JacobJan of F at the position to 
which initial condition x0 has moved at time T. When a 
Gram-Schmidt ortho-normalization is applied to the Yi 
at time intervals 6T to avoid overflow, approximations 
for hi can be obtained by 

(17) 

Here, 1 denotes the number of times the test vectors 

have been normalized. a(• ¸ is the /-dimensional "vol- 
ume" of the parallelepiped spanned by the y•... Yi vec- 
tors (i.e., lyxl, lyx x y21, and (y• x y2) 'y3 for i= 1, 
i - 2, and i - 3 respectively) before the kth normaliza- 
tion took place [see, e.g., Ott, 1993, p. 138]. The Benet- 
tin et al. [1980] method described above was imple- 
mented by analytically calculating the Jacobian, evalu- 
ating it at the x(T) location obtained by step size con- 
trolled Runge-Kutta and propagating the Yi by the Eu- 
ler method. 1 and 6T were usually on the order of 
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BECKER 9 

and 50 respectively, and the integration along trajec- 
tories was stopped when changes for the hi converged 
below 10 -6. 

The connection between Lyapunov exponents and 
fractal dimension of objects attracting trajectories is 

the conjecture of Kaplan and Yorke [1979]. These au- 
thors demonstrated that it is likely that the informa- 
tion dimension and the quantity D•-y (the Lyapunov 
or Kaplan-Yorke dimension) are identical. DKy is given 
by 

D 

1 ,/•1 hi (18) D•½¾ - D 4 [hD+•] ..= 
where D is the largest integer for which •i• hi > O. 
D•,ry is therefore a convenient geometrical measure of 
objects in phase space if Lyapunov exponents can be 
calculated readily. 

3. RESULTS AND DISCUSSION 

The next two sections are concerned with the dis- 

cussion of model results, first from a single slider sys- 
tem and second from interacting spring-coupled slider 
chains. 

3.1. Single Slider Experiments 

3.1.1. Period doubling cascades. Previous studies have 
shown that the two state-variable quasistatic slider sys- 
tem can evolve into a stick-slip limit cycle below the 
stability bound a t -- i [e.g., Gu et al., 1984]. When the 
stiffness a t is continuously decreased, a period-doubling 
sequence is observed, eventually leading to irregular be- 
havior. Figure 2 shows results from my numerical ex- 
periments to illustrate this behavior. 

For a stable limit cycle of period two, a slow build-up 
of stress is followed by a rapid stress-drop in a sliding 
event, and this is repeated in a strictly periodic fashion. 
The characteristic zig-zag pattern of stick-slip in the 
stress versus time plots translates to a deformed limit- 
cycle in phase space, as shown in Figure 2a for a t = 0.9. 
For the parameters given in (8), the system evolves into 
this state froin the unstable fixed point x - 0 when 
it is slightly perturbed. Large perturbations, on the 
other hand, lead to growing oscillations and unstable 
sliding since a t < 1. When a t is decreased further to 
a t = 0.86, the system changes to period four oscilla- 
tions as in Figure 2b. By looking at the phase space 
trajectories in Figure 2b, it becomes evident that the 
folded-loop structure that characterizes period four os- 
cillations could not have been realized in a system with 
a single state-variable. In that model, the phase space 
is restricted to 2-D, where uniqueness requires that tra- 
jectories do not cross. 

Another folding of trajectories forms the period eight 
cycle when a t is down to •0 0.856 (Figure 2c), period 
sixteen for a t•- 0.8552 (Figure 2d), and so on until an 
apparently chaotic state is reached at a t •0 0.853 (see, 
e.g., Figure 5). This period doubling behavior can be 
quantified using the frequency spectrum of the corre- 
sponding tiIne series [Zhiren and C. hen, 1994]. In the 
case of laboratory experiments with incomplete knowl- 
edge of the system equations, this is sometimes the only 
way to proceed in analyzing the system properties [e.g., 
Libchaber et al., 1982]. Detecting the bifurcation values 
of a • where new 2 • orbits are formed from the power 
spectrum can be coinplicated. For our model I propose 
the use of simple Poincare sections as a more accurate 
and straightforward way of quantifying the period dou- 
bling cascade. 

If we plot the y position of trajectories intersect- 
ing the x-z-plane versus a t (see Figure 2a), the "peri- 
odograms" of Figures 3a and 3b arise. Branching lines 
in these plots correspond to newly created cycles en- 
route to irregularity on the right hand side. Figure 3 
shows all the features which have been discussed for 

the one-dimensional logistic equation [e.g., May, 1976] 
such as the period three windows (e.g., at a t•- 0.854) 
and geometrical self-similarity (compare Figure 3a with 
3b). Period doubling bifurcations are now easily de- 
tected when the integration of the system equations is 
run for long enough tilneS (on the order of 25000) to get 
rid of transients which introduce spurious higher order 
cycles. 

If the two state-variable quasistatic friction system 
follows the universal period doubling route [Feigen- 
baum, 1978], the distance factor between the critical 
values of a t for the bifurcation sequence n- 1, n and 
n+l, 

t t 

an -- an-- 1 
5•: , , , (19) 

an+ 1 -- a n 

should converge to one of the Feigenbaum numbers: 

• -- 4.669201 .... 

To test this hypothesis experimentally when a t is con- 
tinuously decreased, a bifurcation can be defined as the 
point where the number of Poincare intersections, 2 •, 
leaves the plateau of the current cycle of order n. It 
will then rise to the next level of 2 •+• after some nu- 

merical transient. Based on this definition, Table 1 was 
obtained by varying the stepsize in a t and iteratively 
narrowing the intervals around the critical values. The 
5• can be observed to converge monotonically to a value 
•04.48. I interpret this as satisfactory agreement with 
the Feigenbaum [1978] theory and attribute the 
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10 CHAOS IN FRICTION 

a) 

-0.5 

x 1 

o 

0 2bo 
T 

b) 

z 

-0.5 

-1 

0 2[)0 
T 

C) :'=0.8552 

-0.5 

K'=0.856 d) 

z 

-0.5 

-1 

-1.5 -1.5 

0 200 0 200 
T T 

Figure 2. Phase space trajectories (top) and parts of the corresponding stress, y, versus time, T, series 
(bottom) for different values of the controlling stiffness n •. (T scale is offset so that initial transients 
have decayed.) (a) shows period two, (b) period four, (c) period eight, and (d) period sixteen stick-slip 
limit cycles. The shaded x-z-plane for part a) illustrates how the Poincare sections for Figures 3a and 3b 
are obtained; the trajectories were reduced to a projection on z: 0 so that the period two orbit would 
result in two points at different y values. Trajectories were generated by numerically integrating eqs. (4), 
(5) and (6) from x0 = (0.05, 0, 0) until T: 2000 and plotting the system evolution for the next 1000 
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BECKER 11 

a) 

-0.5 

-1.5 

i i i 

0.868 0.866 0.864 0.862 0.86 0.858 0.856 0.854 0.852 

b) 

=2 i i I I i i i I 

0.855 0,8548 0.8546 0.8544 0.8542 0.854 0.8538 0.8536 0.8534 0.8532 

K ! 

Figure 3. (a) Periodogram showing a montage of l>oincare sections of the asymptotic system behavior. 
Obtained by integrating the model equations from x0: (0.05, 0, 0) until T -- 20000 and then tracking 
all Poincare intersections until T: 23000. The apparent distortion of the y scale for the upper tree 
structure is due to the choice for the Poincare section and could be improved by adjusting the projection 
further toward the attractor. System behavior for n • •< 0.852 is unstable. (b) Magnification of the box 
marked by dashed lines in 
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12 CHAOS IN FRICTION 

Table 1. CriticM numbers for the controlling stiffness n • at 
the creation of a 2'•-period limit cycle. The progression 
fax:tor &• is calculated from eq. (19). 

1 2 1 

2 4 0.866592 14.09 

3 8 0.857127 5.56 

4 16 0.855424 4.69 

5 :32 0.8550609 4.50 

6 64 0.854980:3 4.48 

7 128 0.8549623 

deviation to systematic errors, probably due to numer- 
ical noise or the way the bifurcations were picked. 

My results are at odds with the study of Zhiren and 
Uhen [1994] who did not find a clear cut convergence 
for a similar system of equations. These authors used 
a different parameter choice, though, and I could not 
directly reproduce their results, probably because of a 
misprint in their paper. The discrepancies might there- 
fore be due to actually different system behavior or due 
to differences in the approach of quantifying the bifur- 
cation locations. Spurious transients might have led to 
inaccuracies in their Fourier spectrum approach. 

By using periodograms, we could therefore show that 
the quasistatic two state-variable slider follows a univer- 
sal period doubling road to irregularity, as suggested by 
Zhiren and Chen [1994]. Previously, similar behavior 
has been found for asymmetrically coupled slider pairs 
with a simpler friction law [Huang and Turcotte, 1990; 
Turcotte, 1997, chap. 11], but this paper makes the first 
stringent case for a homogeneous friction system. 

3.1.2. Unimodal Lorenz mappings. Feigenbaum [1978] 
demonstrated that quantitative universality in period 
doubling cascades arises because the dynamics of all 
qualifying systems can be reduced to a unimodal map- 
ping. It is thus an obvious step to look for the existence 
of such a mapping in the search for an explanation of 
the period doubling we found. 

As suggested by Lorenz [1963], an irregular time se- 
ries, in our case the stress y, can be analyzed by plot- 
ting the amplitudes of sequential extrema n and n + 1 
against each other. If the resulting dots of, say, ynmi n 

• n+l 
versus Ymin trace out a unique graph this indicates that 
the irregular system has hidden low dimensionality and 
can be reduced to a 1-D mapping. As a more practi- 
cal aspect, we could then determine the next minimum 
value based on the knowledge of the current one, even if 
a strange looking time-series might suggest otherwise. 

Proceeding to construct such a Lorenz-mapping, I 
• n+l 

plot the y'•. versus Ymin for the irregular system state • m•n 

at n • -- 0.8525 in Figure 4a as small dots (--Ymin is 
used for convenience). We find that the graph which 
is traced out is indeed almost unique, i.e. the dots lie 
basically on a line with small width that does not curve 
over. Second, the mapping is unimodal; there is only 
one maximum. The existence of this maximum where 

the derivative of the mapping goes to zero is in fact 
the reason for the darker streaks of accumulating points 
one can find in the irregular region of Figure 3a [e.g., 
Strogatz, 1994, p. 463]. Third, a fixed point for the 1- 
D mapping is found at the intersection of the dotted 

. n+l n 
graph and the Ymin -- Ymin line at Ymin • -1.36. Since 
the dot mapping has a slope with absolute value larger 
than unity at this point, small offsets from it will have 
grown by the next iteration. This means that the fixed 
point is unstable and we can expect aperiodic system 
behavior for all times. 

A similar mapping exists for the maximum stress val- 
ues y,•ax. Since the loading rate is constant, we might 
then infer that it is possible to predict the "quiet" time 
intervals AT between sliding events (see Figures 2 and 
5) on the basis of a simple mapping as well. Figure 4b 
demonstrates that this is only approximately the case 
since the finite width of the stress minima and max- 

ima mappings add up to substantial non-uniqueness for 
the "seismic period" AT, especially for 40 < AT < 45. 
However, even a rough chance of predicting the timing 
of the next sliding events might be considered a remark- 
able property that arises simply from the determinism 
behind the chaotic time-series of Figure 5. 

Summing up, quanti^tative period doubling with tnono- 
tonic convergence to 5 can be observed as a route to 
irregularity for the two state-variable friction slider. It 
was demonstrated that the reason for this universal be- 

havior is the existence of a unimodal mapping between 
stress extrema. This property allows the approximate 
reduction of the 3-D dynamics to a 1-D mapping and 
confirms our suspicion that the system behavior will be 
aperiodic for all times in the irregular state. 

3.1.3. Lyapunov exponents. Figure 5 shows the ob- 
ject that is traced out by trajectories in phase space for 
the irregular system state at n • = 0.8525. It is char- 
acteristic for the whole irregular parameter range as 
indicated in Figure 3 and also found for different val- 
ues of n •, say, 0.853. The suggestive interpretation is 
that it is a strange attractor. With the tools described 
in section 2.2 we can address the question of classifi- 
cation by calculating the Lyapunov exponents hi. The 
numbers obtained for the typical irregular system 
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BECKER 13 

a) 2.2 / • i i i i i 
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0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

-ynmin 

b) 

j__ 40 

34 36 38 40 42 44 46 

AT n 

Figure 4. (a) Lorenz mappings of subsequent minima in 
n yn+• for different values of stress amplitudes, Y,,•i,• versus , mi,•, 

n • (--Ymi,• is shown for visualization purposes). The sin- 
gle triangle for n • : 0.9 corresponds to period two stick- 
slip (compare Figure 2a), all stress minima plot on the fixed 

•n+l n . point line for Y,•i,• -- Ymi,• -- 0.86 (diamonds) is a period 
four limit cycle where y,•i,• alternates in amplitude (compare 
Figure 2b). Further, n•: 0.856 (stars) and n' = 0.8552 (cir- 
cles) symbols correspond to period eight and sixteen cycles, 
respectively (compare Figure 2c and 2d), and the numer- 
ous small dots for n • -- 0.8525 trace out the mapping for 
the irregular system state (compare Figure 5). Note that 
the resulting graph is almost unique with some indication of 
higher dimensionality at y --• -1.3. (b) Mapping of subse- 
quent "quiet" seismic periods, AT = versus AT •+•, between 
steep drops of y for n •: 0.8525. 

at n • = 0.8525 are given in Table 2, where the error 
range has been estimated on the basis of convergence. 
The results for the Lyapunov exponents illustrate four 
points: 

First, h l is small but positive in the irregular state, 
indicating exponential stretching of small deviations 
from a trajectory on the attractor. (We will assume 
that linear stretching -which could also lead to posi- 
tive h• for finite times- can be ruled out and we ran 
the simulation long enough to insure this.) This sensi- 
tive dependence on initial conditions is one hallmark of 
deterministic chaos, the others being aperiodicity and 
determinism. The latter is fulfilled since we specifically 
set. out not to consider any inhomogeneities or random 
fluctuations. Aperiodicity is indicated by the Lorenz 
mappings of Figure 4a, which demonstrate that there is 
no fixed point where the system might get hung up. We 
can therefore finally classify the irregular system state 
of the two state-variable slider as chaotic in the strict 

sense. 

Second, h• > 0, h2 • 0 and h3 < 0 holds for 
chaotic control parameter values. This sign triple ap- 
pears when trajectories form a strange attractor [e.g., 
Ott, 1993, p. 136]; then h• > 0 corresponds to stretching 
of flow perpendicular to the trajectory along the attrac- 
tor shape, h3 < 0 arises from the contracting properties 
of the flow toward the attractor, and the remaining van- 
ishing Lyapunov exponent (h2 • 0) corresponds to flow 
tangential to the trajectory (see also Figure 6). 

Third, the sum of all hi is negative. This means that 
the flow is on average contractive, corresponding to 

3 T 

• hi • lim 1 • 7 v. 
i----1 

• 0. (2o) 

When we consider a volume V that encompasses all 
trajectories, we can also write 

v V. F(x)dV < 0. (21) 
Eq. (21) could have been derived by integrating the di- 
vergence of F directly, but with the drawback that the 
resulting expression depends on the integration bounds. 
Contracting flow all over the phase space implies the ex- 
istence of a limit state. Since we observe long excursions 
in pimse space nevertheless (see Figure 5) we conclude 
that this limit state has to be an object with "holes" and 
can not be a simple geometric surface. We have 
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14 CHAOS IN FRICTION 

a) 

¸.¸ 

b) 0 

-1.5 

0 500 1000 

T 

Figure 5. (a) Strange attractor for the chaotic system state at n' - 0.8525 in phase space (side walls 
show projections). (b) Corresponding stress versus time series. Note how the trajectories almost form a 
surface resembling a Moebius ribbon in phase space. While the stick-slip sequence is strictly aperiodic 
and irregular overall, intermittent quasiperiodic sequences can be 
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BECKER 15 

Table 2. Lyapunov exponents hi, sum of all hi, and 
Kaplan-Yorke dimension calculated from eq. (18) with 
D=2. 

Quantity Value 

h• 0.01 4- 10 -4 
h2 0.0002 4- 10 -4 
ha -0.086 4- 10 -4 

3 

•i=1 hi -0.0758 4- 10 -4 
D•:y 2.119 4- 10 -3 

shown that the object that is traced by trajectories in 
Figure 5 is an attractor. 

Fourth, the Kaplan-Yorke dimension indicates that 
the attractor has a fractal strangeness, meaning a non- 
integer dimension of-o2.11. Preliminary calculations 
of the correlation dimension of the attractor, Do, as 
defined by Grassberger and Procaccia [1983] indicate 
that D•. is substantially lower than 2.11, close to 
A puzzling and as yet unexplained result, since D/•y 
D• • 2 is what is usually found for 3-D systems such as 
the Lorenz attractor [Grassberger and Procaccia, 1983]. 

After completing this study I became aware of the 
paper of Niu and Uhen [1995], in which the authors 
calculated Lyapunov exponents in a similar fashion for 
a two state-variable slider system with different param- 
eter values and a single value of n •. Niu and Uhen's 
exponents can be rewritten as hi --0.0124, h2 = 0 and 
h3 -- -0.1094 in my notation. Hence, the hi are roughly 
in agreement and a Lyapunov dimension of 2.11 follows 
as well. I take this as an indication that the chaotic 

dynamics might be a stable characteristic of the single 
slider system for a range of parameters. 

3.1.4. The hi as a function of n'. This section will 
be completed by a discussion of the dependence of the 
Lyapunov exponents on n • (see Figure 6). By compar- 
ing Figure 3 and Figure 6 the values of the hi can be 
interpreted in terms of the asymptotic system behavior. 
For low values of n • < 0.855, hi (solid line) is positive, 
indicating a sensitive dependence on initial conditions, 
hence chaos. The spikes in that parameter range where 
h• > 0 correlate with the period three windows of Fig- 
ure 3 because h2 (dashed line) is zero in chaotic regions 
but negative in the periodic windows. For higher val- 
ues of n •, h2 is in general negative but increases to zero 
repeatedly at the period doubling bifurcations. This 
dependence is analogous to the first Lyapunov exponent 
in chaotic 1-D mappings such as the logistic map [e.g., 
May, 1976]. h3 (dotted line) mirrors hi and h2 since 

the sum • hi (dash-dotted line in Figure 6a) is con- 
strained by the contracting property of the flow, and 
h3 stays negative for all values of n•. The overall pat- 
terns repeat, themselves at different magnification scales 
(compare Figure 6a and 6b), suggesting that the hi ver- 
sus n• plot. shows self-similarity as well. 

In summary, the results for the quasistatic single 
slider model with a two state-variable rate and state 

dependent friction law have demonstrated that the sys- 
tem is inherently chaotic in the deterministic sense. The 
model system is universal in that the road to chaos 
goes through period doubling cycles. If experiments and 
observations further substantiate the use of two state- 

variable friction laws to explain fault processes in na- 
ture, complex friction laws like the one examined here 
should be considered a microscopic source for irregular 
seismicity in the Earth. 

3.2. Spring Coupled Sliders 

With the results of the last section in mind, one can 
ask what effect elastic coupling between sliders has on 
the model seismicity. The inclusion of such interactions 
is a first step toward accounting for continuum effects in 
our model, attempting eventually to study the effect of 
microscopically chaotic friction laws in a homogeneous 
medium. In the following I will present observations on 
the resulting stress cycle oscillations. 

Figure 7 shows the modified model set-up, a chain of 
coupled sliders with connecting springs. For mathemat- 
ical simplicity, only next neighbor interactions are taken 
into account. This type of interacting slider block- 
model is similar to other studies in geophysics [e.g., 
Burridge and Knopoff , 1967; Horowitz and Ruina, 1989; 
Carlson and Langer, 1989; Espanol, 1994] or in tribol- 
ogy [e.g., Weiss and Elmer, 1996], but it is unique in 
the choice of friction law. Equation (3) for the i-th 
slider is modified to become 

d• 
/•'([•0 -- l/•) q-/•cp/(V/+l q- V/_ 1 - 2V/). (22) 

dt 

I//is the velocity of the slider where the force balance is 
taken, I//+1 and ¾•-1 are the neighboring slider speeds, 
and K•pt is the spring constant between sliders n- l, n 
and n + 1. For simplicity and symmetry K•pt is assumed 
constant. I4•.pt will further be non-dimensionalized in 
the same way as K and the resulting t•cp! will be ex- 
pressed as a fraction of n • so that 

t I•cpl 
--. (23) •cpl 
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16 CHAOS IN FRICTION 
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Figure 6. (a) Lyapunov exponents hz, he, and ha (solid, dashed, and dotted line respectively) as well as 
• hi (dash-dotted line) versus control parameter n'. (b) Magnification of part a), only the'hi are shown 
for 
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BECKER 17 

Figure 7. Cartoon of a coupled spring slider system mim- 
icking a fault. 

Therefore, if Iqtcpl is of order unity or larger the system 
can be expected to behave homogeneously like a single 
slider, possibly with a modified effective stiffness. The 

! 

other case, t%p I • 1, corresponds to isolated sliders 
with very weak interactions. In the continuum analogy, 
we can think of • t%p I as the elasticity modul of the ma- 
terial that ruptures along the slider plane, and n • is a 
-possibly different- stiffness that connects the material 
to a fixed driving mechanism, corresponding to astheno- 
spheric loading of a fault in nature. Two examples of 
coupled models with varying • will be described next Iq cp I ß 

3.2.1. Modulated stick-slip cycles. Figure 8a shows the 
stress, y, versus time, T, for 10 coupled slider blocks 
and three different values of the coupling stiffness • Iq cp I ß 
The load point stiffness is n • - 0.965, a value at which 
the single slider would show stable period two stick- 
slip. The initial condition of the coupled models is a y- 
perturbation of one slider at T = 0. As can be seen by 
comparing different traces in Figure 8a, stick-slip oscil- 
lations of varying regularity build up over time for every 
model, regardless of • It is found however, that a Iq cp I ß , 
new type of irregularity was introduced and interaction 
has led to modulation of individual stick-slip oscillators. 

For weak coupling, t•cpl - 0.05, the changes in ampli- 
tude and phase ("beating") are strong and an irregu- 
lar stress drop pattern results. Some traces show that 
varying amplitude stick-slip alternates with "quiet" pe- 
riods during which individual sliders creep along with 
the loading. 

Figure 8b shows the average frequency domain rep- 
resentation for the three different coupling experiments 
of part a), and the power spectrum of a synthetic saw- 
tooth timeseries for comparison. The plots were ob- 
tained by Bartlett-tapering all stress timeseries, taking 
the Fourier transform of the signal [FFT, e.g., Press 
et al., 1993, p. 504], and averaging over all participat- 
ing sliders. As expected, the power spectrum of the 

• - 1 slider chain has the characteristics of the saw- Iq cpl 
tooth (stick-slip) timeseries although the sliders have 
slightly less power in the side bands since the transi- 
tion to sliding is not as abrupt in the friction models 

(compare the solid and the dashed lines in Figure 8b). 
The main frequency, y*, of the high coupling "fault" 
for • - 1 is y* -0 0.0317. This corresponds to a Iq cpl 
seismic period of T -0 31.5 for sliding events that span 
the whole fault. From linear perturbation analysis we 
know that the circular frequency of the periodic orbit 
at the Hopf bifurcation for the single slider, cc ø, is equal 
to the imaginary part of the complex conjugate pair 
that is found in the three eigenvalues of the JacobJan 
of the flow F at the fixed point x = 0. For n • = 1 and 
the parameters given in (8), the eigenvalues Ax,2,3 of J 
are A x,2 -0 -[-0.2093i, and A3 -0 -0.088. Since we are 
still close to the bifurcation, the system frequency •* is 
therefore only slightly detuned from the corresponding 
eigenvalue frequency at n • = 1, •0 • 0.033, even with 
interactions. 

Turning to the t•tcpl - 0.5 slider signal (dashed line) 
in Figure 8b, we observe that its spectral power is richer 
in frequencies other than the base frequency of the seis- 
mic cycle which dominates the • - 1 spectrum The Iq cp I ß 
beating that is observed in the stress drop amplitudes in 
Figure 8a for • - 0.5 corresponds to two discernible Iq cpl 
side band entries at AM-modulation periods of T -0 670 
and T -0 1430 (small bumps, offset Ay -0 4-0.0015 
and Ay • 4-0.0007 from ys, respectively). Finally, 
the stronger irregularities observed in the timeseries of 

• - 0.05 show up as a broad, irregular band of mod- Iq cpl 
ulation frequencies (dotted line in Figure 8b), as the 
absence of any dominating cycle modulation pattern in 
Figure 8a would have led us to suspect. The range of 
modulation frequencies that is observed for weak cou- 
pling corresponds to a broad distribution of the extent 
of lateral coherence for sliding events, analogous to a 
broad distribution of seismic event sizes. 

In summary, Figure 8 demonstrates that the increase 
of • leads to greater uniformity in the time series Iq cpl 
until all sliders are almost perfectly synchronized for 

• - 1 0 This behavior can be interpreted intuitively • cpl ' ' 
along the lines of a typical physics textbook example: 
two spring-coupled pendula. If the coupling between 
the individual oscillators is weak, an amplitude modu- 
lation arises and kinetic energy is transferred back and 
forth between the pendula. For high coupling, both 
pendula will swing at the same amplitude and period, 
acting almost as one pendulum with a modified eigen- 
frequency. 

3.2.2. Slip deficit aspevities. Figure 9 presents an al- 
ternative view of the sliding history ("seismicity"), now 
for a larger system with 100 sliders. The plots are gray- 
shaded representations of the slider slip surplus, Z, in 
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18 CHAOS IN FRICTION 
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Figure 8. (a) Non-dimensionalized stress y versus time T for 10 coupled sliders and three different 
coupling stiffnesses, ntcpt. The individual slider traces were offset in y-direction according to their position 
in the chain, absolute values of y-oscillations are --• -t-2. nt is 0.965 and open ended boundary conditions 
are applied, that is sliders 1 and 10 had only single sided interactions. (b) Fourier domain representation 
of the time series of part a). All y-traces were Bartlett-window tapered, Fourier transformed, and then 
averaged over all sliders. Both parts of the figure show the absolute value of the Fourier coefficients 
versus frequency, while the large plot is a blow-up of the small upper figure around the dominant stick- 
slip frequency of v* --- 0.0317. Solid, dashed, dotted, and dash-dotted lines are for slider time series with 

• -- 1, • -- 0.5, • -- 0.05 and a synthetic sawtooth signal with u - 0.0317 respectively. The I• cpl I• cpI I• cpI , 
synthetic series was sampled at the same time intervals as the slider chain and added for comparison. 
(Note the log-scale which broadens the steep side bands in the FFT of a 
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BECKER 19 

cp- 0.05 

25o • 

K:' --01 
cpl - ß 
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K • 
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Figure 9. Slip surplus E for 100 coupled sliders and six different coupling stiffnesses, •cp•, while • is 
0.965. The abscissa indicates the slider location in the chain while the ordinate shows time with a scale 

of T/10. Center plot shows the gray-scale used, while individual slip surplus peaks are between -2 and 
• 20. The initial condition is a perturbation in sliding speed at the leftmost slider that can be traced as 
it spreads laterally as an oscillatory 
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20 CHAOS IN FRICTION 

position versus time plane. The neutral state is shown 
in medium gray shades, denoting sliders whose slip is 
equal to the amount that would have accumulated by 
simple sliding along with the load point, V0t. While 
darker shading denotes a slip deficit (E < •0) arising 
from long "healing" times, bright shading marks slip 
surplus (E > 0) in which individual sliders overshoot 
the average offset. The resulting irregular pattern can 
be considered as an analog to the stress field formed by 
asperities along a fault subjected to a seismic cycle in 
nature. (Here, the term asperities is used in a general 
sense for patches with varying pre-stress along a fault, 
not necessarily implying changes in the surface proper- 
ties.) As for the experiment presented in Figure 8, it 
is evident that higher • values result in a more regu- N; cpl 
lar seismicity whereas weakly coupled sliders show more 
small scale irregularity. 

Hence, introducing interactions, not surprisingly, has 
lead to a modulation of the slip characteristics along the 
coupled oscillator system. On the other hand, increas- 
ing the interaction to the same order as the load point 
coupling has been shown to have a regularizing effect. 
Similar results were presented by Horowitz and Ruina 
[1989] and Espanol [1994] for different types of fault 
models. That these modulations show up here as well 
hints at their common origin as an elasticity-coupled 
oscillator phenomenon. 

It is important to note that it was not possible to 
reproduce the chaotic behavior of the one slider system 
discussed in the previous section with the undamped 
inertia-free multi-slider model of this study. Rather 
than revealing the same period doubling cascades for 
decreasing •t as the single slider, numerical simulations 
of coupled chains of sliders showed unstable behavior for 
• < 0.9. Fault zones in nature are clearly dissipative 
because of wear on the sliding interface and the radia- 
tion of seismic waves. However, the introduction of a 
regularizing term that might damp the aforementioned 
instabilities is beyond the scope of this study. 

3.2.3. Spatial heterogeneity as a wave phenomenon. As 
the varying slope of the propagating perturbation wave 
front for different t in Figure 9 indicates, the group N; cpl 
velocity with which perturbations in the stick-slip oscil- 
lations travel, u, increases with t Since • N;cp I . N; cp l serves 
as an analog to an elastic modulus for the slider chain, 
it can be expected that a wave speed analog depends 

A• For constant material parameters and unit vol- Oil t• cp l . 
ume, we expect that the phase velocity should scale 
as V/•/rn, for an elastic medium with inertia, where • 
and m denote a stiffness (modul per unit length) and 

mass respectively. In our quasistatic analysis, the rate 
and state dependent friction alone plays a role similar 
to inertia. For example, the "direct effect" in eq. (1), 
A ln(l//V,), gives instantaneous changes in stress for 
changes in velocity V, thereby representing resistance 
to acceleration. Assuming then that this virtual inertia 
effect is independent of t to first order and that there N; cpl 

t 0.5 

is no dispersion we would expect that u •c •cp• ß 
u can be estimated in numerical experiments based 

on the time it takes the initial perturbation to reach a 
certain slider starting from the initial condition applied 
at position one. However, it is not clear how this on- 
set of a perturbation wave front should be determined 
exactly. Figure 10a shows data for five measurements 
where the onset has been defined as the time when the 

absolute slip surplus, IZI, of the middle slider is larger 
than c times the maximum slip surplus, IZl,•a•, that is 
reached by the slider in the remaining experiment. The 
data points are plotted in a log-log plot for different 
c values between 0.0001% and 1% together with linear 
regression lines. 

! 

We see that the u dependence on •cp• can be fit by 
a power law regardless of the value of c. The exponent 
of the power law does vary, however, between • 0.8 
for low values of c and •-•0.2 for c -- 1%. We also 

observe that the slope of the fitted lines converges to 
• 0.8 toward the smallest values of c. I take this as 

t 0.s for the high- an indication that u scales as 
est interaction frequencies, which might be expected to 
travel fastest. The velocity of the main perturbation 
wave front (higher values of c mean larger amplitudes 
of E) seems to scale with a smaller exponent and the 
slope of 00 0.54 for c - 0.1% is close to the prediction of 
0.5 based on the hand-waving argument above. Values 
of c larger than 1% are probably not meaningful if we 
are interested in determining the perturbation velocity 
u. It was also found that the exponent of the ' 1l•--Ncp l re- 
lation does not depend significantly on the system size 
(number of sliders) or the type of boundary condition. 
This is in accordance with the wave speed interpreta- 
tion of u. However, the results for scaling exponents 
demonstrate that quantitative statements about u are 
complicated by nonlinearities and dispersion. 

We now turn to the lateral heterogeneities in the slip 
deficit that form after the initial transients in the mod- 

els of Figure 9 We can observe that small ' models ß Ncpl 
show short wavelength asperities along the fault. Strong 
coupling, on the other hand, goes along with longer 
wavelength, larger scale heterogeneity. (For periodic 
boundary conditions (not shown), variations in 
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Figure 10. (a) Perturbation velocity u versus coup]ing stiffness ' ncp •. u was obtained from the inverse of 
the time at which the middle slider in Figure 9 shows an absolute slip deficit, [I•[, of magnitude _> C[I•[ma•. 

denotes the maximum of Irl during the remainder of the experiment and five measurements 
between c - 0.0001% and c - 1% are shown. The data was fit with a power law for each experiment and 
the exponents are given in the legend together with formal a posterior estimates of lo-uncertainty using 
X 2. _(b) Average spectral power for slip asperities in the spatial domain, f'(E), versus spatial frequency, 
f. F(I•) was computed from the models shown in Figure 9 by taking the FFT of the Bartlett-window 
tapered slip deficit at constant times and averaging over 100 timesteps. Distributions for six different 

! ! 

experiments with ncpz -- 0.05, 0.1, 0.2, 0.5, 1, 1.5, and •pt - 4 are shown. Also indicated are the 
! ! 

center of mass, P, values as defined in eq. (24) for •pt -- 1 and •pt - 0.5. (c) Quantitative analysis of 
the power spectra of part b). Circle symbols denote estimated exponents, a, of a power-law frequency 
decay oc 1If •, obtained by linear regression to get the slope of the spectra in part b) within the range 
0.06 _< f _< 0.2. Errorbars are formal uncertainties based on X 2 (linear scale for a). Square symbols 
indicate the inverse of the first moment, lip (log scale for l/P). The solid line is a fit for lip in the 
range 0.05 _< n'•p t _< 1, indicating that 1/P oc /•/cpl ø'5ø'ø2 for small values 
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22 CHAOS IN FRICTION 

history are almost entirely suppressed for ß ncp I • 1.) 
If we assume a constant spatial modulation (or inter- 
action) frequency fm for lateral cycle perturbations at 

• and constant slider number, an average constant n cpl 
dominant wavelength of the lateral slip irregularity, 

_ 

should scale with u when u - fmA. This means that 
higher velocities will tend to organize the slip pattern 
over larger length scales. Higher coupling should, there- 
fore, not only bring about a higher perturbation velocity 
u as was demonstrated in Figure 10a, but also longer 
wavelength asperities, as observed in the E-patterns of 
Figure 9. 

While a spectral analysis of the sliding heterogene- 
ity with time was already presented in section 3.2.1, 
I will now proceed to analyze the spatial frequency 
content of the asperities that are shown in Figure 9. 
Figure 10b is a plot of the average spectral power of 
the slip deficit asperities, P(E), versus frequency, f 
(0 __• f __• fNyquist 0.5), for seven different models 
with varying coupling stiffness. The graphs were ob- 
tained by averaging the spectral density estimate for 
the last 100 timesteps in each experiment. Figure 10b 
confirms that high '• seismicity is equivalent to a con- b; cpl . 
centration of power in the lower frequencies, and weaker 
coupling results in an emphasis of the short spatial pe- 
riods. The ' - 4 spectrum corresponds to the syn- t'i; cp l 
chronous end-member case with almost no variations 

along strike, similar to the ' - 1 experiment for a t'i; cp 1 
ten slider model that was shown in Figure 8a. 

The frequency distributions are roughly linear in the 
log-log-plot for spatial frequencies in the range 0.06 
f •< 0.2, and the rate of decay (the negative slope of 
the power-law part of the distributions) increases with 
increasing coupling. It is also found that there is a tran- 
sition from a rough power spectrum at low ncp I (e.g., 
solid line in Figure 10b for • - 0.05) to a smoother t'i; cp l 
distribution for high coupling experiments (e.g., dash- 
dotted line for • - 1)' the character of the spectral t'i; cp l 
power distributions changes at • • 0.7. Also, the I'i;cp ! 

• -- 1 spectrum is somewhat of an exception in that t'i; cp l 
is does not follow the general trend for f • 0.2 where 
we can observe more spectral power for • - 1 than t'i; cp l 
for • --0.5 t'i; cp I ß 

To quantify the observation that the slope of the 
power spectra decays as a function of • I fitted a ß I'i;cp I , 
power law 1If • to the data in the interval 0.06 <_ f _< 
0.2. The circle symbols in Figure 10c indicate the values 

• We see that for that best-fit exponent, a, versus ncp t. 
the slope changes from a very slow, 1/f-type decay for 

• - 0.05 with a -• 0.5 to more rapid power cut-off I'i; cp I 
! 

with exponents 6.5 at • -- 0.7. For larger ncp ! r. I.i; cp I , 
Figure 10c indicates a saturation at large scale organi- 
zation, corresponding to • l/f6. However, we observe 
considerable scatter and a decrease in the slope toward 

synchronous sliders at ncp I 
_ 

Finally, the first moment, P, of the F(E) curves, 

P M fF(E)df with (24) 

M - p(r)af, 

can be calculated as a measure for the "center of mass" 

of the spectral power distributions (see also Figure 10b). 
Square symbols in Figure 10c denote the inverse of P so 
that higher values of lIP correspond to more power in 
the lower spatial frequencies. Vqe can observe that 1/P 
increases with • for • t'i;cpl, t'i;cp I •< 1 roughly as a power 
law with -• 0.6 For larger t the plot again indicates • cpl ß t'i; cpl 
some scatter and super-power law increase of 1/? when 
the systems gets close to synchrony. The spectral anal- 
ysis has therefore demonstrated that we can interpret 
the increase in the length scale of slip organization for 
increasing • ncp I as a result of longer perturbation wave- 
lengths. lIP scales roughly in the same way with t'i;tcpl 
as the perturbation velocity u. For • n cp I • 1 we observed 
some qualitative differences between high and low • t'i; cp l 
seismicity which result from the coherent sliding events 
of the asymptotic end-member state without variations 
in the seismic cycle. 

Summing up, coupling modifies the single slider dy- 
namics. The extreme cases of weak coupling with small 
wavelength cycle perturbations and very strong cou- 
pling where sliders move in synchrony border a range 
in which irregular sliding histories form as a result of 
sustained modulation waves. 

, LIMITATIONS AND IMPLICATIONS OF 
THE MODEL 

Investigations of the single quasistatic slider system 
demonstrate that two state-variable friction laws can 

lead to deterlninistic chaos in a homogeneous system. 
Laboratory rock friction can therefore serve as yet an- 
other example of the peculiarities of nonlinear dynam- 
ics: while some aspects show the underlying determin- 
ism (e.g., map-predictions of the seismic period, Fig- 
ure 4), any irregularity will be locally amplified by 
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BECKER 23 

sensitive dependence on initial conditions. If for noth- 
ing else, the system can be viewed as a tutorial for 
low-dimensional chaos from the Earth sciences, to be 
compared with other irregular systems as reviewed, for 
example, by Turcotte [1997]. 

In the following, I will discuss the possible effect of 
inertia and elaborate on conclusions one can draw from 

the results of interacting sliders. 

•. 1. Inertia 

The influence of inertia on the dynamics of the slider 
block system might be important, yet it has been ne- 
glected in all the above models. We can estimate that 
the effect of mass will be twofold. First, inertia will 
tend to destabilize the system. As discussed by Rice 
and Ruina [1983], including a non-zero mass in the lin- 
ear stability analysis of any single slider rate and state 
friction type system results in a decrease in the critical 
stiffness. A material with a constant n t analog modu- 
lus will thus be more unstable with inertia than with- 

out. However, as calculations of Rice and Tse [1986] 
for single state-variable sliders show, the overall stick- 
slip characteristics of systems with inertia are similar 
to the quasistatic case, although the stress drop events 
are modified by the induced dynamic overshoot. Fur- 
ther, Gu and Wong [1994] demonstrated that period 
doubling cascades are also observed in inertial systems 
with two state-variables. In their models, the irregular 
parameter range as in Figure 3 toward lower values of 
n • was not terminated by unstable sliding but rather by 
quasiperiodic system behavior. 

Second, mass introduces another degree of freedom 
in the slider equations. Since three mathematical di- 
mensions are a necessary condition for chaos, one state- 
variable sliders with inertia would also be possible can- 
didates for a microscopic source of irregularity. I am not 
aware of any studies that show chaotic behavior for less 
than two state-variables for single slider rate and state 
friction systems. Yet, two dynamical sliders with asym- 
metric coupling were demonstrated to undergo period 
doubling cascades [Huang and Turcotte, 1990]. Based 
on the results of the studies mentioned above, we can 
state that the inclusion of inertia leads to modified sys- 
tem behavior, including shifted stability bounds. How- 
ever, since inertia alone apparently does not change the 
overall characteristics, studying the simpler quasistatic 
system should be a good start, especially given the com- 
plexity that is already unraveled at this level of simpli- 
fication. 

As the comparison with the work of Huang and Tur- 
cotte [1990] further shows, even for simple slider sys- 
tems two possible origins of irregularity are found which 
might lead to the seismicity that is observed in nature: 
either a complicated friction law working at the micro- 
scopic level might be the cause (as in the studies of Gu 
•t ,t. [1984], C,• ,•a mow [1994], Z•,• ,•a C• 
[1994], and in this work), or irregularity might arise 
with simpler microscopic laws but heterogeneous inter- 
actions. This leads to the discussion of effects that arise 

when sliders are coupled. 

•. 2. Interaction 

Seismicity in the Earth shows some regular features 
of ahnost periodic earthquake recurrence [e.g., Bakun 
and McEvilly, 1984], many more examples of irreg- 
ular seismic cycles that are only quasiperiodic (large 
scale heterogeneity) [e.g., $ieh, 1981], and power-law 
magnitude-frequency distributions of events. The latter 
Gutenberg and Richter [1949}-type (GR type) size dis- 
tributions might indicate criticality in the sense of Bak 
et al. I1988], with possible consequences for earthquake 
interaction ranges and predictability [e.g., $ornette and 
Sornette, 1989]. 

Assuming that the complex, possibly chaotic labo- 
ra. tory friction laws we studied have relevance for the 
behavior of fault zones in nature, we can try to eval- 
uate whether a homogeneous fault in which these laws 
apply still produces regular seismic cycles in a contin- 
uum. If it does, then other mechanisms such as spatial 
heterogeneity of material parameters (noise input), ge- 
ometrical complexity of fault traces [fractal grounds to 
start from, e.g., King, 1983], or mechanical fault inter- 
actions [e.g., Harris, 1998, and references therein} might 
be more important in leading to the observed irregular- 
ities in nature. 

Previous studies have incorporated simpler friction 
laws in slider blocks [see, e.g, Elmer, 1996; and Tur- 
cotte, 1997, chap. 17, for reviews}, or more sophis- 
ticated continuum models [e.g., Horowitz and Ruina, 
1989; Rice, 1993; Shaw, 1995; Cochard and Madariaga, 
1996}. However, the conditions under which fully dy- 
namical models of faults produce periodic seismic cy- 
cles, large scale irregularity, or GR-type characteris- 
tics are still debated [e.g., Rice and Ben-Zion, 1996]. 
It appears that simple, one state-variable friction laws 
generically produce larger scale irregularity from a ho- 
mogeneous model, but GR-statistics seem to be 
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24 CHAOS IN FRICTION 

the outcome of a small parameter range that might not 
be realized on Earth [Shaw and Rice, 1999]. 

The slider models froin the previous section are an 
attempt to contribute to this discussion on a very sim- 
plified level. Coupled sliders show slip histories which 
do not result from the individual friction law's char- 

acteristics but are dominated by interaction effects. 
Similar findings were reported by Horowitz and 
ina [1989], and Espanol [1994] discussed the transition 
from periodicity to soliron-like solutions as in my Fig- 
ure 9 for a velocity weakening friction law. More re- 
cently, de Sousa Vieira [1996] examined changes in the 
magnitude-frequency distributions of sliding events as a 
function of the coupling stiffness for a standard spring- 
block model with inertia and simple friction. In my 
quasistatic models, the variations in stick-slip cycle am- 
plitude are a coupled oscillator effect. They can be de- 
scribed by a lateral interaction mechanism whose wave- 
length increases with the strength of coupling. Higher 
coupling was therefore observed to have a regularizing 
effect, leading to larger wavelength asperities and more 
regular slip patterns. The observed mechanisln of regu- 
larization might have general relevance for seismicity in 
nature since a variety of models with different friction 
laws, with and without inertia, appear to show similar 
features. 

My slider experiments have various shortcomings, 
such as the limitation to a single degree of freedom for 
motion, discrete blocks rather than a continuum model, 
and the limited parameter range that. could be explored 
without damping. It is hence not possible to conclu- 
sively quantify the extent to which two state-variable 
friction can act as a source of chaos in coupled sys- 
tems at this point. Given the sinall parameter range in 
which chaos is observed for a single slider and the ob- 
served regularizing effect of interactions, my conjecture 
is that elastic interactions on different scales dominate 

in the Earth, reducing the effect of microscopic chaos 
in friction, and leading to larger scale irregularity. 

5. CONCLUSION 

Two state-variable rate and state dependent friction 
laws that are derived from laboratory rock sliding ex- 
periments were shown to result in deterministic chaotic 
behavior for a simplified quasistatic model. Since a uni- 
modal mapping can be derived from aperiodic time se- 
ries, universal period doubling cascades are observed as 

a route to chaos. The single slider model is thus a good 
example with which to demonstrate bounds on the pre- 
dictability of model rupture events. Interaction models 
imply that the microscopic friction law is not as impor- 
tant in coupled sliders. Other sources of irregularity 
such as mechanical interaction between faults might be 
more important in nature. 
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Note added in proof. In a work of which I was un- 
aware until after the preparation of the final copy of 
this article, $hkoller and Minster [Shkoller, S. and Min- 

ster, J.-B., Reduction of Dietrich-Ruina attractors to 
unimodal maps, Nonlin. Process. Geophys., •, 63-69, 
1997] constructed unimodal mappings directly from the 
attractor of the two state-variable system. This alter- 
native to my time-series approach yields comparable re- 
sults, confirming that chaos can be an intrinsic feature 
in dry 
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