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[1] Oceanic lithosphere undergoes permanent deformation during subduction once the
stresses exceed the elastic limit. Departures from elastic behavior occur by brittle failure in
the shallow lithosphere and by a combination of low- and high-temperature creep at greater
depths. We combine laboratory-based rheological models with estimates of slab shape
from earthquake hypocenters to quantify the bending stress and dissipation in subduction
zones. The peak stress occurs at the depth of the brittle-ductile transition, which is
controlled mainly by lithospheric age. Integrals of the stress over the thickness of the plate
are used to evaluate the resistive bending force and the bending moment. A representative

value for the resistive force on old oceanic lithosphere is 3 x 10" N m™", which is
comparable in magnitude to ridge push but opposite in direction. Both the bending
force and moment are remarkably insensitive to the rate of subduction. In fact, the
bending moment can be approximated using a simple power law rheology and a stress
exponent of n = 14. Such a large exponent implies that the lithosphere behaves like a
perfectly plastic solid. For most subduction zones the bending moment saturates along the
entire plate. As a consequence, the bending stress does not influence the development of
curvature during subduction. This behavior may explain why the curvature of subducted

lithosphere is nearly independent of age.
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1. Introduction

[2] Subduction of oceanic lithosphere is a fundamental
part of plate tectonics. Recycling cold lithosphere into the
interior provides an important source of buoyancy for mantle
convection [Richter, 1973], yet the strength of the litho-
sphere may impede convection by resisting deformation at
the trench [Conrad and Hager, 1999; Becker et al., 1999;
Korenaga, 2003]. Any impediment to motion can be quan-
tified in terms of the work required to bend the lithosphere.
Estimates depend on both the stress and the strain rate in the
lithosphere. Strain rates can be inferred from changes in the
shape of the lithosphere [e.g., Bevis, 1986] and Kostrov
summation [e.g., Bevis, 1988], whereas the stress can be
computed with a suitable rheological model. A realistic
model is liable to include several types of rheological
behavior, depending on the local temperature, pressure and
strain rate. Deformation is accommodated by brittle failure in
the shallow part of the lithosphere, where the temperature is
low and the confining pressure is modest. Ductile
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deformation (creep) is expected at higher confining pressure,
although the mode of deformation is sensitive to temperature.
A distinction is made between high- and low-temperature
creep to reflect the relative importance of dislocation climb
[Frost and Ashby, 1982].

[3] Laboratory experiments provide a quantitative descrip-
tion of lithospheric deformation. Studies of frictional sliding
suggest that failure on pre-existing faults is well described by
a Mohr-Coulomb criterion [Byerlee, 1978]. The condition for
failure is mainly controlled by the normal stress on the fault
with little dependence on temperature or rock type. By con-
trast, creep is sensitive to both temperature and rock type;
most experiments use olivine aggregates to characterize the
lithosphere and upper mantle [e.g., Hirth and Kohlistedt,
2003]. Rheological models for high-temperature [Hirth and
Kohlstedt, 2003] and low-temperature [Mei et al., 2010]
creep now cover a large span of conditions expected in sub-
ducting lithosphere. Consequently, we can combine these
rheological models to assess the validity of viscous [Schellart,
2009], pseudo-plastic [Rose and Korenaga, 2011] and per-
fectly plastic [Buffett and Heuret, 2011] approximations,
commonly used in geodynamic models of subduction. Given
the large stresses and lower temperatures, it suffices to con-
fine our attention to brittle failure and dislocation creep
[Billen and Hirth, 2007].

[4] In this study we construct a composite rheology
for oceanic lithosphere using Byerlee’s law together with
laboratory-based models for high- and low-temperature
creep in olivine. A kinematic description of strain due to
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Figure 1. Schematic illustration of subducted lithosphere.
Deformation due to bending is described in a coordinate sys-
tem (x, y, z) that follows the mid-plane of the lithosphere
(denoted by dashed line); x is the distance along the mid-
plane, y is the distance from the mid-plane and z is perpen-
dicular to the x — y plane. The local dip of the lithosphere
is O(x) and the curvature K(x) is defined by K(x) = db/dx.
When there is no strain of the mid-plane (pure bending),
the velocity of the mid-plane, u, is constant.

bending is used to estimate both the stress and the bending
dissipation during subduction. We also introduce a simple
power law rheology to approximate the composite rheology.
A high stress exponent for the best-fitting power law model
suggests that the oceanic lithosphere deforms like a plastic
solid during subduction. An important consequence is that
the bending stresses do not contribute to the moment balance
on the lithosphere; the weight of the slab exerts a torque on
the plate, but the response of the lithosphere is largely con-
trolled by stresses on the surface of the plate. Thus the
intrinsic strength of the lithosphere does not govern the
development of curvature once the elastic limit is exceeded.
This result is opposite to expectations for a viscous plate
[Bellahsen et al., 2005], but it does explain why the curva-
ture of subducted lithosphere is independent of thickness or
age [Buffett and Heuret, 2011].

2. Stress and Strain Rate

[5] The geometry of subducted lithosphere is illustrated
schematically in Figure 1. Bending at the onset of subduc-
tion causes extension above the mid-plane of the plate and
compression below. We describe this deformation using a
coordinate system that follows the mid-plane of the plate.
Let x be the distance along the plate, y be the distance from
the mid-plane (positive down), and z be the mutually per-
pendicular direction (positive into the page). The curvature
of the plate, K(x, ), is defined in terms of the local dip angle,
0(x, 1), by K(x, £) = 06/0x. When there is no extensional strain
along the mid-plane (i.e., pure bending), the strain rate, €,y, is

given by
. _ DK _ (0K 0K |
Exx = )’Dt ==y at Up ax ) ( )

where D/Dt denotes the material derivative following the
subducted lithosphere and uy is the velocity of the mid-plane
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in the x direction. It is convenient to define the velocity u
relative to the position of the trench, so that 0K/0t describes
the change in the shape of the subducted plate (or slab) when
viewed from the frame of the trench. If the shape of the slab
relative to the trench is unchanged during rollback or
advance, then 0K/0t vanishes and all of the deformation is
due to motion of the slab through the subduction zone at
velocity u (sometimes called the subduction velocity). On
the other hand, a velocity perpendicular to the mid-plane
contributes to both 0K/0¢ and the deformation.

[6] A combination of numerical models and observations
suggest that most of the deformation is due to motion of the
slab through the subduction zone. An estimate of curvature
along the slab can be inferred from earthquake locations on
the slab surface or interior [e.g., Bevis, 1986]. A compilation
of estimates from the major subduction zones [Buffett and
Heuret, 2011] suggests that K(x) increases from the trench
to the point of maximum curvature (or minimum radius of
curvature R,;,), over a distance that is comparable to R,.
Unbending also occurs over a distance of roughly R, as the
slab straightens and descends into the mantle. It follows
that the change in curvature along the slab is approximately
oK/ox = + R;,izn, where the sign depends on whether the
slab is bending or unbending.

[7] By comparison, 0K/0t is caused by variations in the
dip angle with time. A change in dip at the location where
the slab straightens (x = 2R ,,;,) must produce a change in dip
throughout the bending/unbending region, although the
amplitude of this change decreases toward the trench and
vanishes at the surface where the plate is nominally hori-
zontal. From the definition of curvature, we approximate the
time dependence using

oK 0 (30\ o (a0\ _ 1 (06(L,1) 5

8t_6t(6x)_6x(8t>~L( ot ) @)
where L =~ 2R, refers to the location where the slab
straightens. Numerical models of subduction suggest that the
dip at intermediate depths (200 to 400 km) can change by 15
to 20 degrees over 50 million years [Billen, 2008], although
somewhat larger changes are reported during the transient
initiation of subduction. Taking 00(L, £)/0t = 0.4 degree/Myr
as a plausible estimate for the time dependence, and letting
Rin = 200 km and uy = 60 mm/yr, we find that the temporal
change in K accounts for about 10% of the deformation.
When the dip decreases with time (as observed in the
numerical models) the time dependence in K decreases the
deformation during bending and increases the deformation
during unbending. The opposite occurs when the dip
increases with time. In either case the contribution of time
dependence to the total dissipation is reduced by the can-
celation during bending and unbending. As a result, it suf-
fices to approximate the strain rate using

éxx = _yMOK’7 (3)
where the prime denotes differentiation with respect to x. We
take €. = 0 and require ¢,, = —¢,, in an incompressible

material.

3. Rheological Models

[8] Stress in the lithosphere is evaluated using the imposed
(depth-dependent) strain rate in the rheological models. In
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the brittle region we assume that rocks fail by sliding along
localized fractures. The shear stress, 7, needed to overcome
friction on a surface with normal stress, o,, is [Byerlee,
1978]

T=0.850, for 0, < 200MPa, (4)

7=50+0.60, for , > 200MPa. (5)

[o] Failure is expressed in terms of the differential
(bending) stress, o4, using geometric relationships between
the failure envelope and principal components of stress. In
particular, the slope of the failure envelope determines the
orientation of the failure plane relative the direction of the
principal stresses. During bending the largest compressive
stress is vertical (o3 = P) and the least compressive stress
(o1 =P — 0,) represents the direction of tension. Solving for
7 and o, at failure, and substituting the result into Byerlee’s
law yields

04>0.78P  for o, < 200MPa, (6)

04>56.6+0.68P  for o, > 200MPa. (7)

[10] In adopting the lower bounds as our estimate for
stress in the brittle regime, we assume that fractures have
favorable orientation and that the fault strength is not
reduced by elevated pore fluid pressure [Gerya et al., 2008].

[11] Stresses in the ductile part of the lithosphere are
governed by flow laws for high- and low-temperature creep.
The strain rate, €, for high-temperature creep is usually
represented in the form of a power law

E(P))7

13 :Ah(od)"exp(fﬁ (8)

where o, is the differential stress (tension or compression),
n = 3.5 is the stress exponent, E(P) is the pressure-dependent
activation energy, 7T is absolute temperature, R is the gas
constant and A, is a coefficient that can include the influ-
ences of water content and melt fraction. Parameter values
are taken from Hirth and Kohlstedt [2003] for a ‘wet’ olivine
(4, = 3.58 x 10° MPa~>° 57!, E(P) = 502 kJ mol ™" at
P =2 GPa and a nominal water concentration of 1000 H/
10° Si). We also consider the rheology for high-temperature
creep in dry olivine to assess the possible role of water
(4, = 1.1 x 10° MPa >~ s~ ' and E(P) = 550 kJ mol " at
P =2 GPa).

[12] A different representation is used for low-temperature
creep to explicitly account for the stress required to move
dislocations (sometimes called the Peierls stress o¢,). The
study of Mei et al. [2010] expressed the strain rate in the

form
¢ = Ay(04) exp {—% (1 - @)} (9)

Ip

where E(0) = 320 kJ mol ™" is the activation energy at zero
stress, 4;= 1.4 x 1077 MPa—2 s~ ! is a model constant and
the Peierls stress is o, = 5.9 GPa; the exponential depen-
dence on o, gives a highly nonlinear flow law.

[13] We do not explicitly consider the elasticity of the
plate because the typical curvature during subduction pro-

duces elastic stresses that vastly exceed the stresses
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predicted with either brittle or ductile deformation. Only the
innermost 1 or 2 km of the plate is liable to retain its elastic
strength, and this region makes only a small contribution to
the bending moment and the dissipation. Complete loss of
elastic strength is also supported by analysis of gravity-
topography admittances [Billen and Gurnis, 2005]. Conse-
quently, we use the brittle and ductile rheologies with an
imposed strain rate ¢ = ¢,, to evaluate the stress everywhere
in the plate. In the ductile region a combination of low- and
high-temperature creep operate in parallel, so we find a
single value for the stress o, = oy, in the sum of (8) and (9)
that reproduces the imposed strain rate. Note that the
imposed strain rate varies with depth according to (3). For
illustrative purposes we evaluate €, using uy = 60 mm/yr
and K’ = 2.5 x 10~"" m 2, but consider a broad range of
values in later sections. In addition the stress is strongly
dependent on temperature, which we evaluate using a con-
ductive geotherm with a seafloor temperature of 275 K and
a mantle temperature of 1600 K. Pressure increases
hydrostatically with depth, based on a mean density of
3300 kg m > and constant gravity g = 9.8 m s~ 2.

[14] Stresses from the brittle and ductile models are
evaluated across the entire plate, but the value that is
realized at any depth is defined by the minimum stress
from either mechanism. A transition from brittle failure to
creep occurs at the depth where these two mechanisms
give comparable stresses. This transition also coincides
with the maximum stress because brittle failure occurs at
lower stress when the depth is shallower and ductile stress
is reduced by the effects of temperature at greater depths.
The transition depth also defines the location of the mid-
plane, which ensures that the smallest strain rates occur
where the plate is strongest. Because the stress in the
ductile region depends on ¢, we iteratively adjust an
initial estimate for the mid-plane depth until the mid-plane
coincides with the peak stress. In detail, the maximum
ductile stress occurs a few kilometers below the mid-plane
because the strain rate (and hence ductile stress) vanish on
the mid-plane. Convergence is achieved once the brittle
stress matches the ductile stress a few kilometers below
the mid-plane.

[15] Representative examples of the bending stress are
shown in Figure 2, specifically for the model that includes
high-temperature creep based on wet olivine. Both the mid-
plane depth and the maximum stress vary systematically
with the age of the lithosphere. Virtually no change in the
mid-plane depth or the maximum stress occurs when we
adopt the model constants for dry olivine because nearly all
of the strain rate in the vicinity of the mid-plane is accom-
modated by either low-temperature creep or brittle failure.
High-temperature creep is only effective in the lower part of
the plate, where the temperature is sufficiently high. The
onset of high-temperature creep can be detected as a slight
change in the slope of the stress versus depth in the region
below the mid-plane. The choice of dry olivine causes a
small increase in the stress near the base of the plate (relative
to that shown in Figure 2) and produces a modest 10%
increase in the bending moment (see below). This difference
is small relative to other uncertainties. The depths and focal
mechanisms of outer-rise earthquakes limit the mid-plane
depth to roughly 25 to 40 km [Chapple and Forsyth, 1979;
Forsyth, 1982]. Agreement with the results in Figure 2 lend
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Figure 2. Stress in the lithosphere due to bending at a subduction zone. The maximum stress coincides
with a transition between brittle failure (above) and creep (below). A conductive geotherm defines the
temperature through the lithosphere. Calculations for lithospheric ages of 50, 80 and 160 Ma yield pro-
gressively thicker and stronger lithosphere. Constant values for the plate velocity and the rate of change
of curvature are assumed in the calculations (see text), but other choices have only a weak influence on

the stress state.

support to the rheological models for brittle failure and low-
temperature creep.

4. Mechanical Properties of Subducted
Lithosphere

[16] Several physical quantities can be computed from the
stress profiles in Figure 2. For instance, the mechanical
thickness of the lithosphere can be defined by the region
where the strength of the lithosphere exceeds some threshold
(say a few MPa). Alternatively, we could define the
mechanical thickness as twice mid-plane depth because the
stress is nearly symmetric about the mid-plane. Both defi-
nitions give roughly similar results. On the basis of the mid-
plane depth we obtain a mechanical thickness of H,, = 56, 66
and 76 km for lithospheric ages 50, 80 and 160 Ma. These
values are roughly 50% to 60% of the thermal thickness
Hr =232kt [e.g., Parsons and Sclater, 1977], where
k= 10"° m’~"' is the thermal diffusivity and ¢ is the age.
(By this definition the thermal lithosphere represents 90%
of the total temperature change across the thermal boundary
layer.)

[17] Another quantity of interest is the bending moment

H,/2
M(x) = /H R VO dy,

(10)

where the limits of integration depends on the mechanical
thickness H,,. Both the stress, o,,, and thickness, H,,, are
calculated using the rheological models for a given plate age,

curvature and velocity. The integral for M(x) is obtained
numerically using Simpson’s rule. Figure 3 shows how M(x)
varies over a broad range of values for the plate velocity. For
a given age (or thickness) the bending moment is relatively

18

n=135
z
= 140 Ma
£
5 100 Ma
=
8 75 Ma
< //
c
[
faal
50 Ma
1017 - N ,
10 10" 10

Plate Velocity (mm/yr)

Figure 3. The bending moment, M(x), as a function of the
plate velocity for several ages (50, 75 100 and 140 Ma).
Weak variations in M(x) with u, are consistent with the pre-
dictions of a power law model. The best-fitting slope corre-
sponds to a stress exponent of n = 13.5.
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insensitive to changes in the plate velocity. Such a weak
dependence of M(x) on velocity (or strain rate) is diagnostic
of plastic materials. (A more quantitative assessment is
given below.) For the limiting case of perfect plasticity we
expect the bending moment to saturate during subduction.
Once M(x) saturates the largest subsequent change in the
moment occurs at the point of maximum curvature, where
the plate begins to unbend. At that point the sign of K’
changes and the sense of strain reverses from tension to
compression (or vice versa on the other side of the mid-
plane). After the moment changes sign, a new level of sat-
uration is established.

[18] The moment during unbending is not constrained by
the stress state during bending. Brittle failure under com-
pression occurs at larger differential stress compared with
failure under tension [e.g., McNutt and Menard, 1982]. A
higher confining pressure may further enhance the brittle
strength of the lithosphere as the plate subducts to greater
depths. On the other hand, the ductile stress may decrease
once the plate begins to warm. For the purpose of estimating
the dissipation we make the simple assumption that the
moment during unbending is equal in magnitude to the
moment during bending.The rate of dissipation per unit
length of plate is

o) = /H/

J—H, /2

€re Oxedy = —ugK M(x), (11)

where €, is defined in (3). The strain rate €,, = —¢,, does
not contribute to ¢(x) because we make the usual assumption
that the non-hydrostatic stress o,,, vanishes in a thin plate.
Note that the dissipation is always positive because K’ and
M(x) have opposite sign. Integrating ¢(x) over the length
of the plate gives the total dissipation

P = fquS,,,/ |K'|dx, (12)

where | - | denotes the absolute value and M, is the
saturated (constant) value of M(x) during bending; by
assumption the moment during unbending is M
(x) = —M,,. For a simple subduction zone where K’
changes sign only once at the point of maximum curvature
(denoted by Kiay), We can replace [ |K'|dx in (12) with
2K ax- This approximation is used below to quantify the
influence of bending on the dynamics of subduction.

[19] Bending produces a net horizontal force on the plate
at the trench. Buffett [2006] showed that the force due to
bending can be expressed as F, = —®P/uy. It follows that the
bending dissipation is equal to the work done against the
resistive  bending force. Using the approximation
® = 2upKaxM,,: gives Fy 2K maxMqr.  Taking
M, = —4.5 x 10" N-m/m as a representative value for old
oceanic lithosphere and K., = 6.7 X 107 m! as an
average value for the Japan-Kurile subduction zone [Buffett
and Heuret, 2011], we obtain F), = —3 x 10> N m™ ..
(The negative sign indicates that this force opposes the
motion of the plate.) This force is comparable in magnitude
to ridge push and about a factor of ten smaller than slab pull
[Turcotte and Schubert, 1971], although much of the weight
of the slab is probably supported by shear stresses on the
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surface of the descending plate. Numerical simulations of
subduction suggest that the stress transmitted through the
plate to the surface produces a net force of 6.5 x 10> Nm™'
or less [Capitanio et al., 2009]. Since this force has been
reduced by F}, through the zone of bending (and unbending),
the net force below the bend might be as large as
9.5 x 10> N m~". Thus effects of bending could reduce
the in-plate force by 30% or more. On the other hand, the
work done against F), is about 10% of the total work done
by slabs sinking through the upper mantle. A few sub-
duction zones in the western Pacific have maximum cur-
vature that exceeds the average value for the Japan-
Kuriles, but the largest bending dissipation is unlikely to
exceed 20% of the total work due to slab pull.

[20] Di Giuseppe et al. [2008] predicted a larger bending
dissipation (30—50%), based on numerical calculations with
an effective viscosity that is roughly a thousand times larger
than the upper mantle value. Wu et al. [2008] adopted a
similar viscosity but obtained a lower dissipation by using a
smaller average curvature during subduction. The lower
dissipation in the study of Wu et al. [2008] gave better
agreement with the speed of observed of plate motions.
However, the dissipation in a viscous plate depends on (K")?,
integrated along the entire length of the slab [Buffert, 2006].
The exact integral for dissipation in a thin viscous sheet can
be approximated in terms of the maximum curvature (rather
than the average curvature), although other approximations
have been proposed [Ribe, 2010]. Making this change in the
study of Wu et al. [2008] substantially increases the dissi-
pation. A lower dissipation can be achieved with a plastic
rheology [Buffett and Heuret, 2011], although the peak
value reported in that study (less than 40%) is probably too
high because the thermal thickness H7 was used to approx-
imate H,,.

5. A Simple Power Law Rheology

[21] The weak dependence of the bending moment on the
plate velocity suggests that the lithosphere as a whole
behaves like a plastic solid during subduction. We quantify
this suggestion by showing that a simple power law model
with a high stress exponent can be used to approximate the
laboratory-based rheology. The power law model is con-
structed using the Levy-Mises equation [Hill, 1964]

) L,
€ij 257(011 :

(13)

)Uij7
where 7 is a material constant, oj; are the deviatoric com-
ponents of the stress tensor and o; = +/J, is defined in

terms of the second invariant J, = ¢j;0;/2. Noting that the
second invariant of the strain rate tensor is

|
Dy = €65 = €

: - (14)

We find from (13) that

(15)
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Consequently, the deviatoric components of stress are

=27 27]|5)cx‘ (=1/ 6xx> (16)

o'y = —2n(2nlen)” " . (17)

The total stress (deviatoric plus mean stress ) is

(18)
(19)

O =0+0',
Oy =0+ U'yw
which implies that & = —o",, because o), = 0. Substituting

the mean stress into (18) gives the desired result for the
bending stress

O = 25(2n|ea)"", (20)

where s denotes the sign of €, (e.g., s = 1 for &, > 0).
Integrating o, for the bending moment M(x) yields

M(x) _ (77uo1<:)1/’1]_[’£’2r1-¢—1)/r17

n
—_— 21
2n+1 (21)

when K’ > 0 and

n
M(x) = pT— (17’40[(r)l/n]_[r("2n+l)/n7 (22)

when K’ < 0.

[22] Limiting cases for M(x) correspond to viscous and
perfectly plastic rheologies. The usual result for a viscous
plate emerges when n = 1 [e.g., De Bremaecker, 1977]. In
this case the material constant, 7, corresponds to the plate
viscosity. The bending moment (and force) has a linear
dependence on the plate velocity and a strong H;, depen-
dence on the mechanical thickness. As a result the bending
force increases more rapidly with age than the force due to
slab pull, which depends linearly on the thermal thickness
Hy=2H,,. A perfectly plastic behavior occurs when n — oo.
In this case the bending moment (and force) is indegendent
of ug and varies with mechanical thickness as H;, [e.g.,
Turcotte et al., 1978]. Once again the bending force
increases more rapidly with age than slab pull. Conse-
quently, the bending force exerts the greatest resistance on
old oceanic lithosphere, which can lead to preferential sub-
duction of lithosphere with intermediate age [Buffett and
Rowley, 2006; Becker et al., 2009].

[23] An effective stress exponent for the composite,
laboratory-based, rheology can be inferred from the weak
dependence of M(x) on u, in Figure 3. The best-fitting slope
of M(x) versus uo gives M o< ud®"* with little variability
about this fit. In other words, a single value for the exponent
in the power law model does a very good job in approxi-
mating the moment computed using the laboratory-based
rheology. According to (21) and (22), the laboratory-based
rheology is well described with a stress exponent of
n = 13.5. This value is large enough to approximate the
perfectly plastic limit. In the plastic limit the bending dissi-
pation is proportional to uy [Buffett, 2006], whereas the
laboratory-based rheology gives uy®’. A weak velocity
dependence has also been obtained in numerical calculations
of Rose and Korenaga [2011], which combined a pseudo-
plastic rheology with high-temperature creep above a critical
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temperature. Their estimate of the bending dissipation was
roughly proportional to ub?. The weaker velocity depen-
dence in the present study is probably due to our treatment of
low-temperature creep.

6. Forces on Subducted Lithosphere

[24] A plastic rheology has a number of consequences for
the force balance on subducted lithosphere. For example the
saturation of the bending moment affects the development of
curvature through the subduction zone. Evidence for satu-
ration at the trench was previously noted by Goetze and
Evans [1979], based on observations of lithospheric flex-
ure. In addition, the deflection of slabs at the 670-km dis-
continuity has been used to argue for plastic deformation
[Cizkova et al., 2002]. Here we use the power law rheology
from the previous section to evaluate the bending moment
along the entire length of subducted lithosphere. This cal-
culation requires an estimate for the plate curvature, which
can be determined using the location of hypocenters in a
subduction zone. Two-dimensional profiles were defined by
Heuret and Lallemand [2005] for all of the major subduction
zones, and hypocenters within approximately 100 km of
each profile were compiled by Heuret [2005] using locations
from Engdahl et al. [1998]. A spline fit through the hypo-
centers defines a smooth surface for computing the curvature
[Buffett and Heuret, 2011]. To illustrate the saturation of the
bending moment, we consider a profile from the central
Aleutians (identified as CALES in Wu et al. [2008]). The
plate age and velocity at the trench from Wu et al. [2008] are
58 Ma and 61.4 mm/yr, respectively.

[25] Figure 4 shows the spline fit through earthquake
locations for profile CALES. The curvature, K(x), is com-
puted from the local dip of the smooth surface in Figure 4a.
The distance along the mid-plane, x, originates at the start of
the spline fit on the seaward side of the trench and continues
until the seismicity terminates at depth. Curvature increases
over the first 200 km and steadily decreases over the next
200 km. In this simple (but typical) example, K’ changes
sign only once at the point of maximum curvature.

[26] A reference value for the moment is calculated using
the laboratory-based rheology and a nominal value for K’
(denoted by K7.r). The moment for other values of K’ can be
extrapolated using the power law model to give

M(K') = iM(Kr’e) <1f ) l/n,

ref

(23)

where M(K,’ef) = —1 8 x 10" N m is evaluated using

Klr=35x 10 °m™'. (The plate velocity and age are treated
as constants). A stress exponent of n = 13.5 is chosen to
approximate the results of the laboratory-based rheology,
while the sign of M depends on the sign of K, according to
(21) and (22). The derivative, K'(x) = dK/dx, is computed
from the spline fit. Substituting K'(x) into (23) determines
the moment as a function of distance along the mid-plane
(see Figure 5).

[27] Variations in the bending moment are relatively small
during the initial increase in curvature, indicating that the
bending moment is effectively saturated. A more abrupt
change in M(x) occurs at the point of maximum curvature,
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Figure 4. Two-dimensional profile of subducted litho-
sphere from earthquake locations in the central Aleutians.
(a) A smooth spline is fit through the hypocenters (crosses)
to approximate the mid-plane of the plate. The horizontal
position is defined relative to the trench. (b) The curvature
of the lithosphere is calculated as a function of distance, x,
along the slab. The origin x = 0 refers to the starting position
of the spline fit on the seaward side of the trench.

where K’ changes sign. During unbending the moment
saturates at roughly the same magnitude because the simple
power law rheology makes no distinction between bending
and unbending. The derivative, M' = dM/dx, is strongly
peaked at the location of maximum curvature, but nearly
vanishes elsewhere (see Figure 5b). The observation that M’
vanishes away from the point of maximum curvature has
important consequences for the torque balance on the plate.

[28] For illustration we consider the force and torque bal-
ance on the plate when the forces on the top and bottom
surfaces are small (see Figure 6). Such an approximation is
appropriate when the plate is strong compared with the
surrounding mantle. The leading-order balance of forces in
the direction perpendicular to the plate is

4y

IimA -y :03
2 T HnBo(g-Y)

(24)
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where H, Ap(g-y) is the y component of the buoyancy force
due to the excess density of the plate and Q is the net force
due to shear stresses in the plate,

H,/2
Q:: /f JWGW-
—Hy/2

[29] The key point is that buoyancy produces shear stres-
ses in the plate when there are no other forces on the top or
bottom surfaces.

(25)

2‘:x10

1.5F

Benging Moment M(x) (N)

_2 g L L L L L L L L
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Distance along Mid-Plane (km)
13
35720 : : : : . . .
(b)
sl
£ 5t
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S 2f
S~
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O 15t
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2
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Figure 5. Bending moment along a slab in the central Aleu-
tians, based on the power law rheology with a stress exponent
of n=13.5. Both the stress exponent and the material constant,
7, are chosen to reproduce the results of the laboratory-based
rheology (see text). (a) The bending moment is nearly constant
as the curvature increases (K’ > 0), consistent with expecta-
tions that the moment saturates during subduction. Once the
plate begins to straighten (K’ < 0) the bending moment
changes sign and adjusts to a new value, which is comparable
in magnitude to the moment during bending. (b) The deriva-
tive dM/dx is strongly peaked at the location where K’ switches
sign. In the limit of a perfectly plastic material the moment is
approximated by a step function and the derivative can be
represented by a delta function.
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N
X

Figure 6. Schematic illustration of the forces and torques
associated with internal stresses and buoyancy in a short seg-
ment of subducted lithosphere. Not shown are the additional
contributions due to the effects of curvature or due to forces
on the top and bottom surfaces of the plate. (a) Forces in the
plane of the plate include the X component of the buoyancy
force and the net force, N, due to normal stresses o,,. (b)
Forces perpendicular to the plate include the ¥y component
of the buoyancy force and the net force, Q, due to shear
stresses oy,. (c) A torque balance in the absence of forces
on the top and bottom of the plate includes contributions
from the shear force Q and the bending moment M.

[30] Figure 6b shows that shear stresses also contribute to
the torque balance on a plate. We maintain a balance by
opposing the torque due to Q with the bending moment M.
The leading-order description of the torque balance is

M'=Q, (26)
which poses a problem when the bending moment saturates
because M’ = 0. This means that the torque balance cannot
be achieved without additional forces. One way to enforce
the torque balance is to apply a differential pressure across
the plate. If the differential pressure is large enough to bal-
ance the buoyancy force in Figure 6b, then O would vanish
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and the torque balance would reduce to M’ =~ Q = 0. The
required differential pressure might develop as a result of
low pressure in a thin, lubricating layer on top of the plate
[e.g., Leal, 2007]. Alternatively, the pressure difference
might also arise due to the effects of corner flow [Stevenson
and Turner, 1977; Tovish et al., 1978].

[31] A second way to enforce the torque balance in a
plastic plate is to apply shear stresses to the top and bottom
of the plate. However, we cannot simply rely on shear
stresses due to relative motion of the plate because to the
torque depends on differences between the shear stress on
the top and bottom surfaces. A large shear stress on the
interface with the overriding plate might yield the required
torque, although it is doubtful that this stress is sufficient to
achieve a torque balance, assuming that the magnitude of the
shear stress is comparable to a typical stress drop during
intraplate earthquakes [Kanamori and Anderson, 1975].

[32] It is useful to compare the plastic rheology with the
behavior of a viscous plate. Using (24) to eliminate O from
the torque balance gives

&M .
—=—H,Ap(g - §).

dx? (27)

[33] In effect, the buoyancy force exerts a torque on the
plate, which is balanced by bending stresses inside the plate.
Substituting for M from (21) and (22) gives

@K _3Ap(g - ¥)

o TS J) 28
dx? muoH2 (28)

which describes the development of curvature along the
plate during subduction. Buoyancy drives an increase in
curvature, whereas the viscosity, 7, and thickness, H,,, of the
plate oppose the increase in curvature. In fact, the local dip,
0, of the plate is governed by

d*0 3Apg
i (WOH’%)COS 0,

(29)

where g is the magnitude of the gravity vector g. We con-
clude that the curvature of a highly viscous plate should
depend on both viscosity and thickness, whereas the distri-
bution of earthquake hypocenters in subduction zones sug-
gests that the curvature of the lithosphere is independent of
thickness [Buffett and Heuret, 2011]. This insensitivity to
thickness is entirely consistent with a plastic rheology.
Because the moment saturates during subduction, bending
stresses cannot balance the torque arising from buoyancy.
The inherent strength of the plate, as defined by the bending
moment, has no role in the evolution of curvature. This
result appears to be consistent with observations.

[34] A plastic rheology also has relevance for the trans-
mission of stresses through the plate to the surface. Because
the rheology is weakly dependent on strain rate, the strength
of the plate under uniform tension should not be very dif-
ferent from the strength associated with bending. In fact, the
stress in the brittle region should be identical because the
stress state is tensional in both cases. Compression occurs
below the mid-plane during bending, but low-temperature
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creep has no explicit dependence on the sign of differential
stress. Consequently, the strength of the lithosphere in the
ductile region should be similar in compression and tension.
Integrating the stress o, across the thickness of the plate, e.g.,

"H /2

—Hy/2

defines the force transmitted through the plate. Using the
stresses from Figure 2 to evaluate NV gives an upper bound. For
plate ages =50, 80 and 160 Ma, we obtain N, = 1.7 X 1013,
2.5 x 10" and 3.4 x 10"* N m~ !, which are all above the
values usually reported in numerical simulations of subduction
[Capitanio et al., 2009]. This suggests that the strength of the
plate is not a limiting factor in transmitting stress to the sur-
face. While failure is expected near the surface of the plate, a
strong central region near the mid-plane allows for effective
transmission of stress. Numerical calculations that include a
high-viscosity core [e.g., Capitanio et al., 2009; Stegman et
al., 2010] should reproduce this effect. Equal care is needed
to quantify the resistance due to to bending.

[35] The bending force in a viscous plate can be approxi-
mated by [Buffett, 2006]

F?_% 3 03
b= 377MOHK

m~ max’

(1)

where K.x is the maximum curvature. By comparison, the
bending force for the composite rheology was approximated
by

Fb - 2Kmax%‘at7 (32)
which means that the effective viscosity of the plate (particu-
larly the outer parts of the plate) should be chosen to satisfy

1
A/[sat ~ = gH,i,Kimnuo-

(33)

[36] Taking M., =—4.5 x 10'” N and H,, = 80 km for old
oceanic lithosphere, together with #, = 60 mm/yr and
Kpax =5 X 107 m™ 1, gives n = 5.5 x 10?% Pa s. On the
other hand, it might be preferable to avoid a velocity-
dependent viscosity by using a power law rheology with a
large stress exponent [e.g., Krien and Fleitout, 2008].

[37] To conclude we show that the bending force for the
composite rheology emerges in a straightforward way from
the in-plane force balance on the lithosphere (Figure 6a).
When there are no surface forces on the plate, the equation
for the force balance in the X direction reduces to [Ribe, 2001]

AN aMm K2H>
o K== _H,(g- f&)Ap(l +—)

2 (34)

where g is the acceleration due to gravity and Ap is the
excess density of the plate relative to the mantle. Allowing
for surface forces adds more terms to (34), but it does not
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alter the calculation of the bending force. Integrating (34)
over the length of the plate from x =0 to x = L gives

L L 2772
N(O):N(L)f/ K‘;ﬂder/ Hy(g - i)Ap(lJrKlI;’”)dx.
Jo X 0
(35)

[38] Thus the horizontal force on the plate at the surface,
N(0), has three contributions in (35). The last term represents
the weight of the slab (i.e., slab pull), whereas the second
term represents the resistive bending force. The first term
defines the stress state at depth, which can be eliminated from
(35) by choosing L to coincide with the depth where stress in
the plate changes from tension (N> 0) to compression (N < 0)
[Isacks and Molnar, 1971]. Noting that dM/dx vanishes over
most of the plate, the bending force can be written as

L
am
Fb - _/ K 4 dx = ZKmaXMvaty (36)
0

X

which is identical to the estimate of the force based on
bending dissipation. If the sign of K’ changed several times
over the length of the plate, multiple peaks in dM/dx would
be expected. To calculate F;, we would need to sum these
individual contributions or (equivalently) replace 2K ,,.x with
| IK'|dx. The bending force abruptly alters N(x) at locations
where K’ changes sign. In most cases this coincides with the
maximum curvature of the plate. An abrupt drop in N(x)
might be reflected in a change in the orientation of focal
mechanisms above and below the point of maximum curva-
ture because the background stress state should be altered,
particularly in old oceanic lithosphere.

7. Conclusions

[39] Laboratory-based rheological models are used to
determine the strength of oceanic lithosphere during subduc-
tion. Estimates of stress are obtained with an imposed kine-
matic description of the strain rate to define the mechanical
thickness of the lithosphere, which is typically 50% to 60% of
the thermal thickness. The stresses also determine the moment,
force and dissipation associated with bending at subduction
zones. The bending moment is weakly dependent on velocity,
indicating a nearly plastic behavior. A simple power law
model is developed to quantify the degree of plasticity. The
best-fitting slope of the bending moment versus the plate
velocity corresponds to a power law model with a stress
exponent of n = 13.5.

[40] One consequence of a large stress exponent is that
the bending moment saturates during subduction. Stresses
associated with bending in a plastic plate cannot balance the
torque associated with buoyancy forces. Instead, surface
forces on the plate must play an important role. Conse-
quently, the conditions in the overriding plate should con-
tribute, and possibly control, to the evolution of curvature.
The bending force in old oceanic lithosphere is approxi-
mately 3 x 10'> N m™', based on a representative estimate
for slab curvature. The corresponding dissipation is about
10% of the work done by slabs sinking through the upper
mantle, although a few subduction zones with larger
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curvature can dissipate as much as 20%. Further insights
into the dynamics of subduction might be sought in the focal
mechanisms of subduction earthquakes. An abrupt change in
the normal force N(x) is expected when the plate switches
between bending and unbending. Such a change in the
background stress state might be reflected in the orientation
of focal mechanisms.

[41] Acknowledgments. This work is partially supported by a collabo-
rative research grant from the National Science Foundation (EAR-0911255).
We thank two anonymous reviewers for many constructive comments and
suggestions.
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