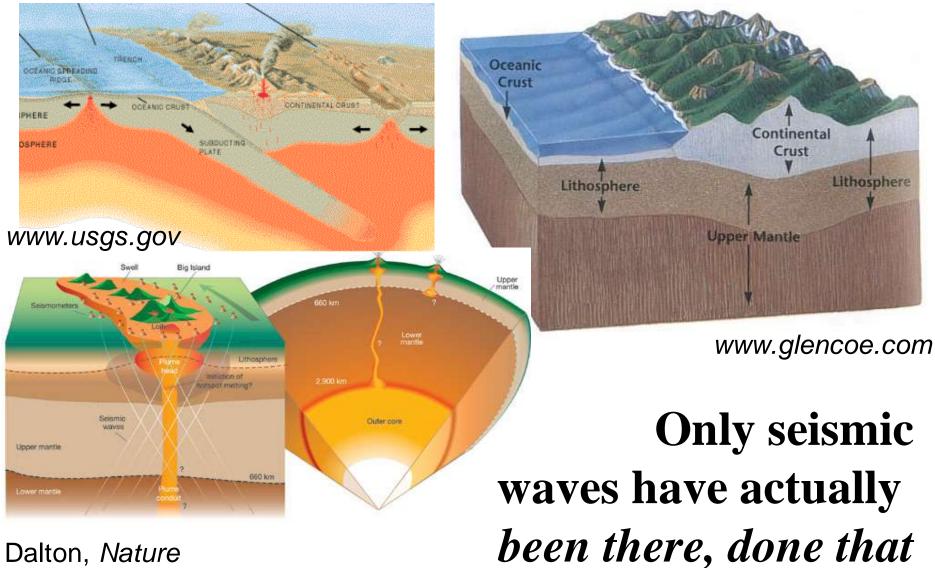
Seismic tomography: Art or science?

Frederik J Simons Princeton University

What's inside the Earth?



2003

The seismic tomography problem

f(x,y)

pξ

S

х

Inverting the Radon transform

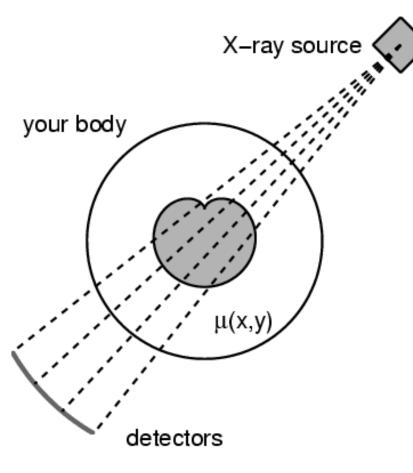
$$\mathcal{R}[f(x,y)](p,\boldsymbol{\xi}) = \int_{S} f(x,y) \, ds \quad (1)$$

Purpose: Reconstruction of functions from their line integrals (projections). **Problem:** Given $\mathcal{R}[f(x,y)](p, \xi)$, find f(x, y).

Radon [1917] derived a solution to this problem, giving an expression for \mathcal{R}^{-1} .

This looks more complicated than it is; and that's my point.

What is f(x, y)? Medical applications.



X-ray absorption & scattering

Tissues and bones have \neq absorption and scattering coefficients $\mu(x, y)$.

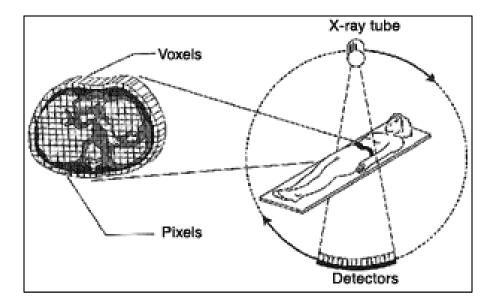
Recorded intensity goes as

$$I = I_0 \exp\left[\int_{\text{ray}} -\mu(x, y) \, ds\right].$$
 (2)

Sources and detectors rotate to achieve perfect "coverage".

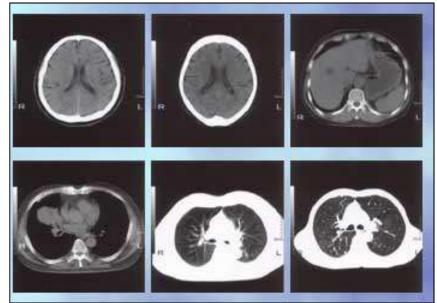
This looks simpler than it is; and that's my point.

X-Ray attenuation tomography

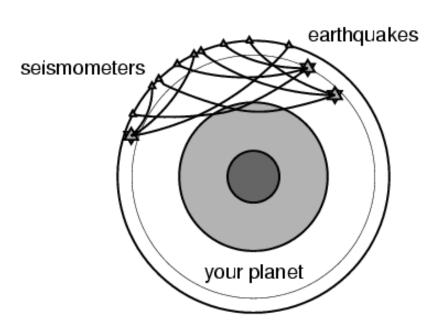


Projections from all angles: *X-ray intensity*

Reconstructed image: *X-ray attenuation constants*



What is f(x, y, z)? Seismic wavespeeds.



Travel-time tomography

The Earth is made of a heterogeneity of seismic velocities v(x, y, z).

Travel-time anomalies go as

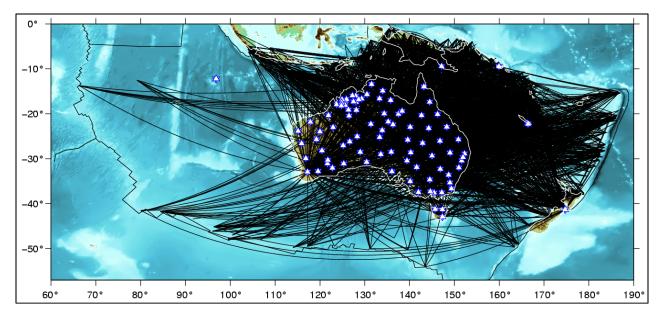
$$\delta t = \int_{\text{ray}} \frac{1}{\delta v(x, y, z)} \, ds. \tag{3}$$

Waveform tomography

Arrival times depend on the wavelength of the seismic phases.

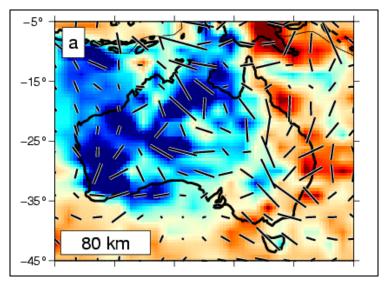
All raypaths curve and coverage is far from perfect.

Seismic wavespeed tomography

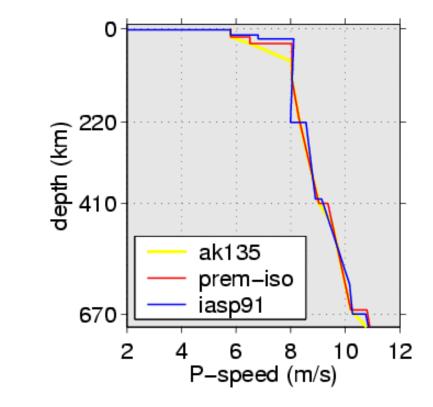


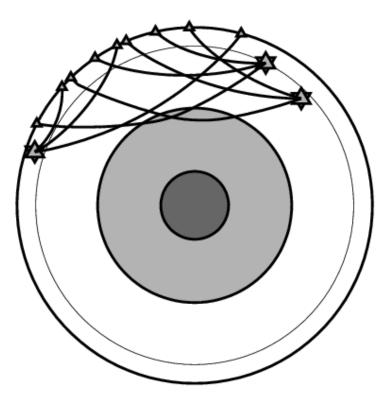
Projections from all angles: *Waveforms and arrival times*

Reconstructed image: *Wavespeed variations*



Forward modeling of the wave field, Part I: Ray tracing, most 1-D





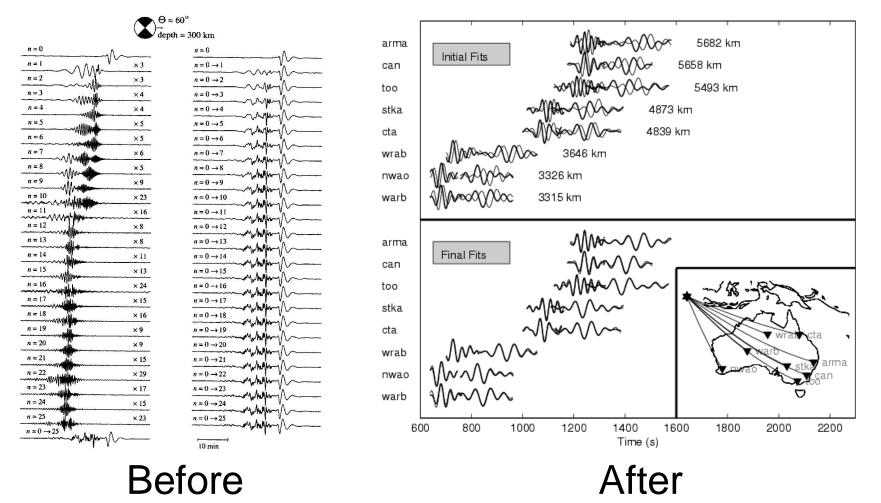
Before

Kennett, GJI, 1995

Bullen & Bolt, 1985

Buland, *BSSA*, 1983

Forward modeling of the wave field, Part II: Normal-mode summation, 1-D

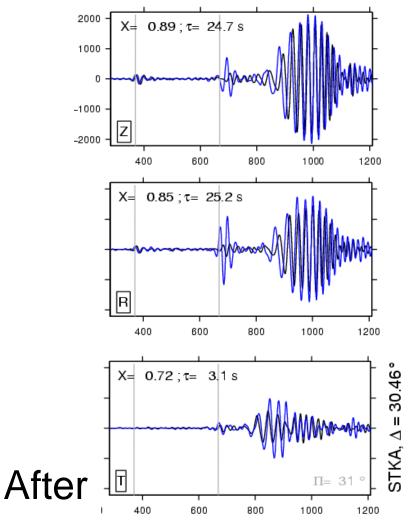


Dahlen & Tromp, 1998

Simons, Lithos, 1999

Forward modeling of the wave field, Part III: Spectral-element methods, 3-D

Before



Komatitsch, GJI, 2002

That's all there is to it. Goobye!

Except:

• X-ray: exponential of a line integral S-ray: raypath itself is a function of velocity

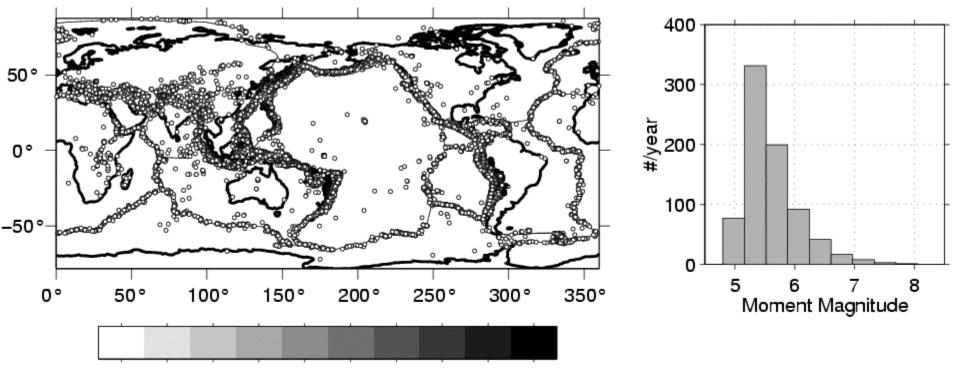
non-linear functions!

- Earth coverage is non-continuous
- "Experiment" is done by nature and not repeatable
- Earthquake source parameters (location, time) is uncertain

Remedy:

- Linearization
- Discretization
- Regularization (a priori information)

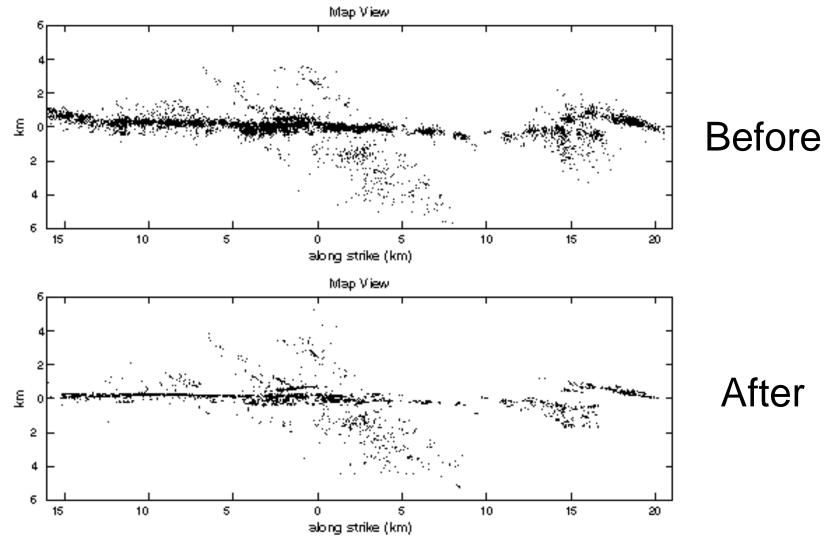
Non-continuous source coverage



>35 >50 >75 >100 >125 >150 >200 >300 >400 >500

The CMT catalog of large events

Source location – (in)extricably linked



Source relocation is big business.

Schaff, *JGR*, 2002

Recipe, Step 1: Linearize!

X-ray

Approximate $\exp(-x) \approx 1 - x$.

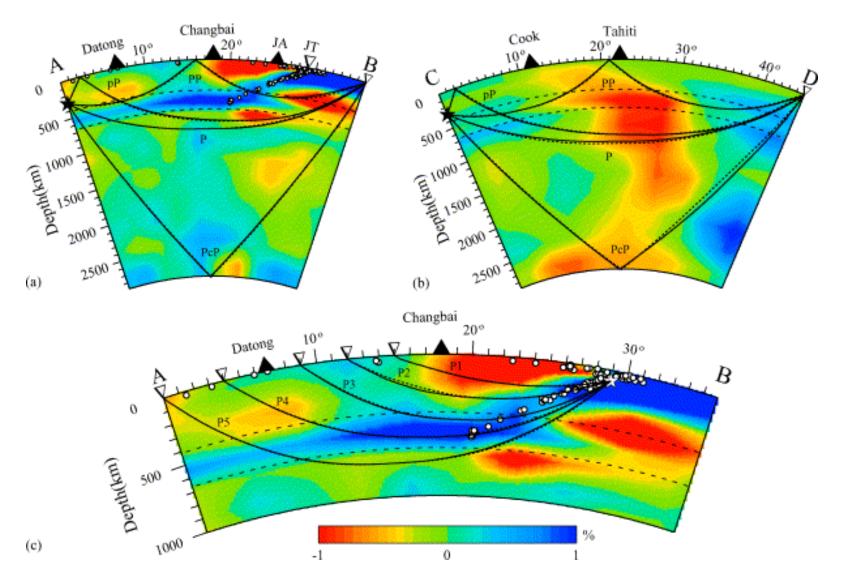
S-ray

Fermat's principle: For a small perturbation of the path, the travel-time (anomaly) is stationary. Using the *slowness*:

$$\delta s = \frac{1}{\delta v} \quad \to \quad \delta(\delta t) + \mathcal{O}[(\delta t)^2]. \tag{4}$$

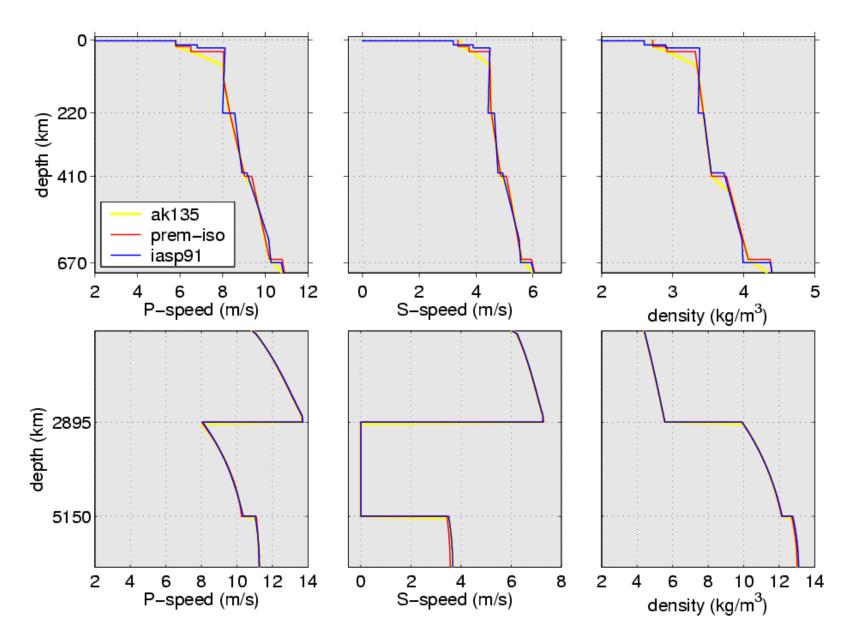
This highlights the importance of the **reference model**, usually a radial model v(r), such as PREM, AK135, IASP91.

Fermat's Principle at Work for you

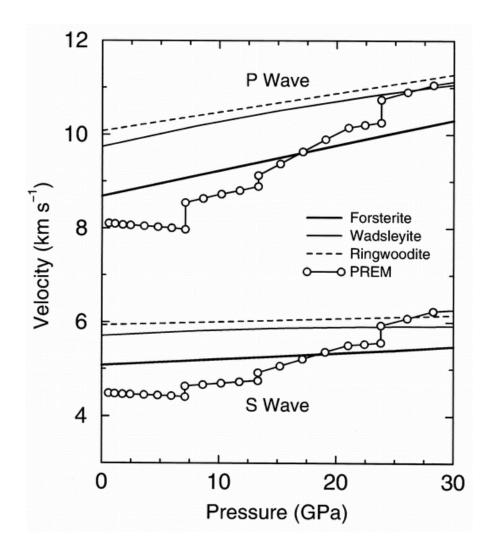


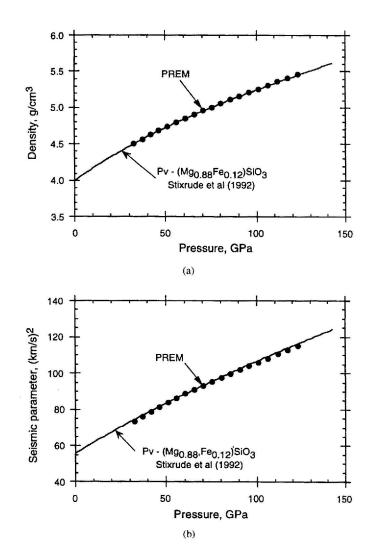
Zhao, PEPI, 2004

The reference Earth: Radial models



... and at least some of it is true...

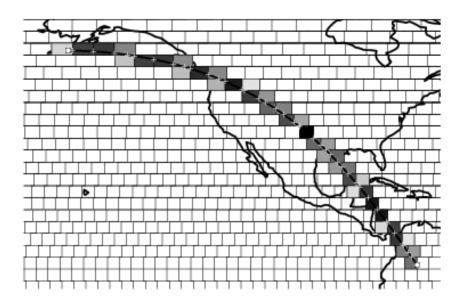




Karki et al., Rev. Geoph., 2001

Jackson, 1998

Recipe, Step 2: Discretize!



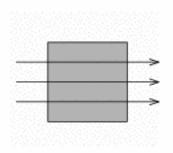
For a set of seismic rays $i = 1 \rightarrow M$, calculate the length spent in each of $j = 1 \rightarrow N$ grid boxes, in each of which it accumulates a proportional fraction of the total traveltime anomaly δt .

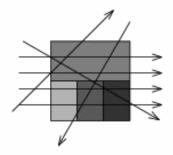
$$\delta t_{i} = L_{ij} \delta s_{j} \quad \text{or} \quad \delta \mathbf{t} = \mathbf{L} \cdot \delta \mathbf{s}$$
(5)
M travel-time
anomalies
$$\begin{bmatrix} \vdots \\ \delta t_{i} \\ \vdots \end{bmatrix} = \begin{bmatrix} \vdots \\ \dots \\ L_{ij} \\ \vdots \end{bmatrix} \times \begin{bmatrix} \vdots \\ \delta s_{j} \\ \vdots \end{bmatrix} \text{N slowness} \text{ perturbations}$$
(6)

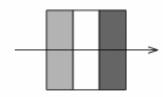
M×N sensitivity matrix

Letting it simmer: Solving inverse problems

We have:	$\mathbf{G}\cdot\mathbf{m}=\mathbf{d},$	which is linear .
You think:	$\mathbf{m} = \mathbf{G}^{-1} \cdot \mathbf{d},$	but we can't invert a non-square $M \times N$ matrix.
You think:	$\mathbf{G}^{\mathrm{\scriptscriptstyle T}} \cdot \mathbf{G}$	is square, let's solve $\mathbf{G}^{\mathrm{T}} \cdot \mathbf{G} \cdot \mathbf{m} = \mathbf{G}^{\mathrm{T}} \cdot \mathbf{d}$.
You try:	$\mathbf{m} = (\mathbf{G}^{\mathrm{\scriptscriptstyle T}} \cdot \mathbf{G})^{-}$	$\mathbf{G}^{\mathrm{T}} \cdot \mathbf{G}^{\mathrm{T}} \cdot \mathbf{d}.$
Alas!	$\mathbf{G}^{\scriptscriptstyle\mathrm{T}}\cdot\mathbf{G}$	may be singular, ill-conditioned, under/over-
		determined, have (near-)zero eigenvalues, and
		thus be not-invertible.







over-determined, M>N

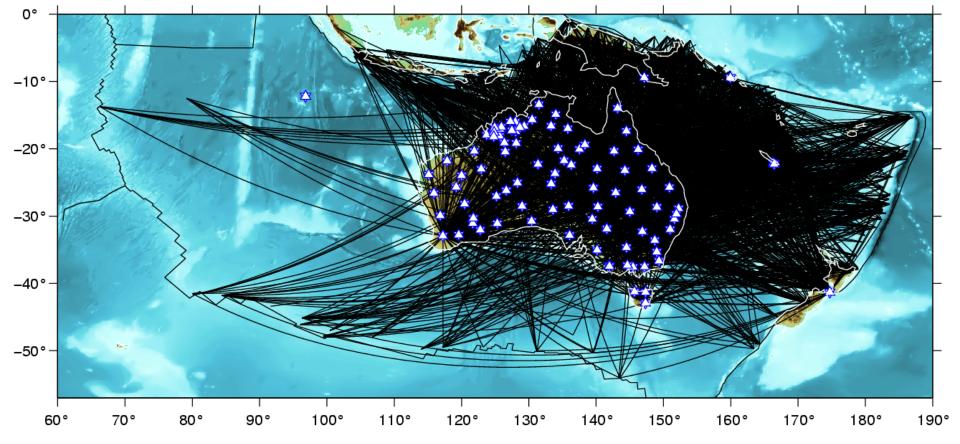
mixed-determined

under-determined, M<N

Menke, 1989

Simons, GJI 2002

A dense path coverage minimizes the amount of a priori information needed



Receiver coverage Picking the right continent

Over-determined: More data than unknowns



Define a *penalty fuction* Φ on the *error* e, and minimize, by least-squares:

$$\Phi = \left[\mathbf{G} \cdot \mathbf{m} - \mathbf{d}\right]^2 = \mathbf{e}^{\mathrm{T}} \cdot \mathbf{e} \quad \text{by} \quad \frac{\partial \Phi}{\partial m_i} = 0. \quad (7)$$

This is a minimization in the data space.

Under-determined: More unknowns than data

Add equations that minimize some norm in the model space:

$$\Phi = \mathbf{e}^{\mathrm{T}} \cdot \mathbf{e} + \mathbf{m}^{\mathrm{T}} \cdot (\mathbf{A}^{\mathrm{T}} \cdot \mathbf{A}) \cdot \mathbf{m}.$$
(8)

If A = I the identity matrix \rightarrow minimum model norm: norm damping. If A = D a difference matrix \rightarrow minimum-roughness: smoothing.

Regularization: the Mathematics

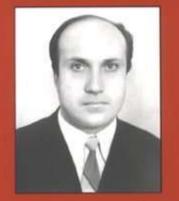
Numerical Methods for the Solution of Ill-Posed Problems

hy A. N. Tikkonev A. V. Gonehansky V. V. Stepanov A. G. Yagnla Annese Just Constants Marrier, Anna

KLUWER ACADEMIC PUBLISHERS

ILL-POSED AND INVERSE PROBLEMS

Departmento Accessional Microso Microso Destruction on the Occusion of the 70th Barlices



Editors: V.G. Romanov, S.J. Kabanikhin, Yu.E. Anikonov and A.L. Bukhgeim

III VSPIII

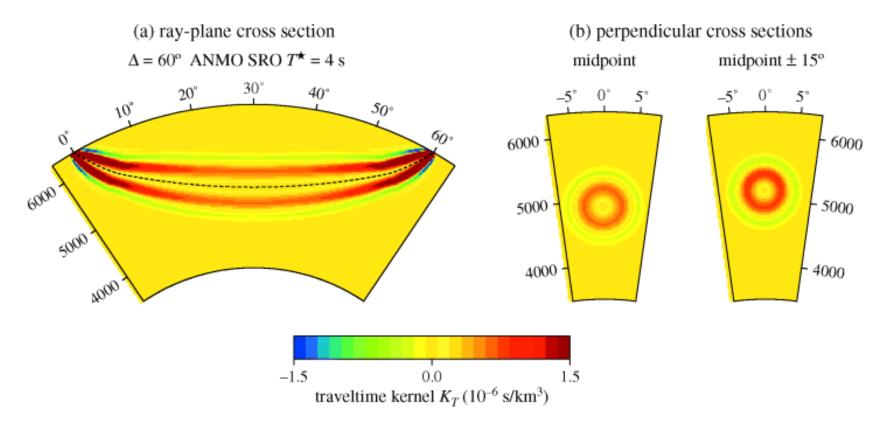
a Boston

Methods in Geochemistry and Geophysics, 36

GEOPHYSICAL INVERSE THEORY AND REGULARIZATION PROBLEMS

M.S. ZHDANOV

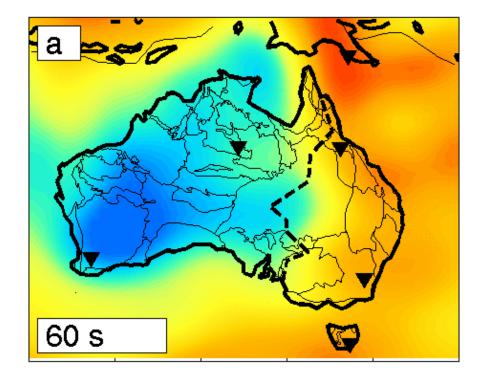
Regularization: the Physics

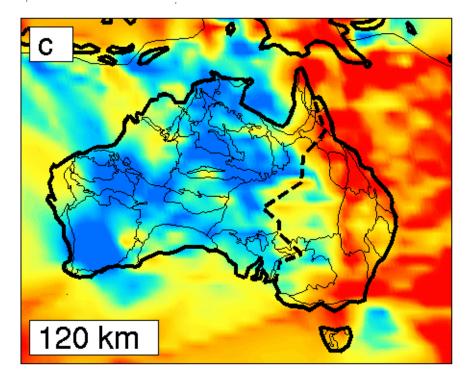


Such "fat" rays sample more of the Earth and thus we need fewer of them to have a wellconstrained tomographic problem.

Dahlen, *GJI*, 2002

Regularization: the Art



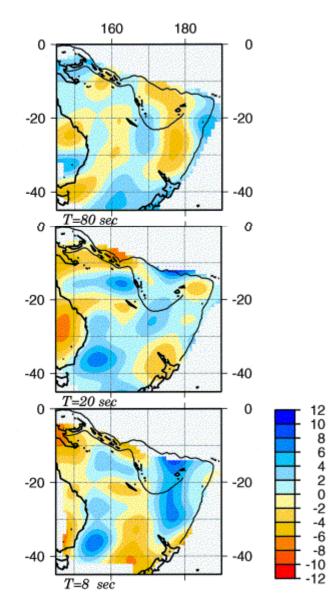


Too much? Too smooth?

Too little? Too rough?

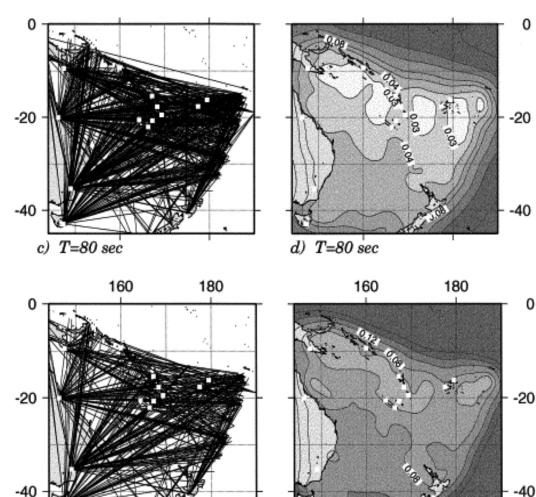
Simons, Lithos, 1999

How to interpret seismic models



Pillet, PEPI, 1999

Demand to see the ray paths



b) T=10 sec

a) T=10 sec

RAYLEIGH WAVES

PATH's coverage (left) and ERRORS (right)

Pillet, *PEPI*, 1999

0.20

0.16

0.12

0.08

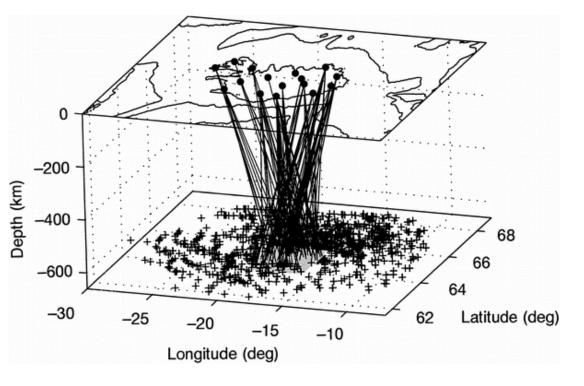
0.06

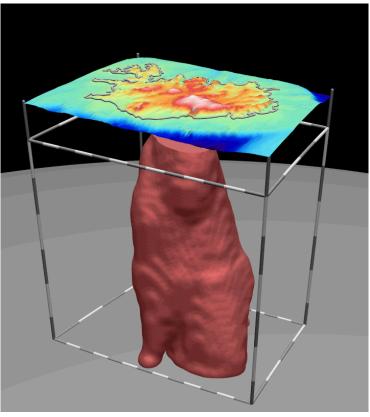
0.04 0.03

0.02

0.00

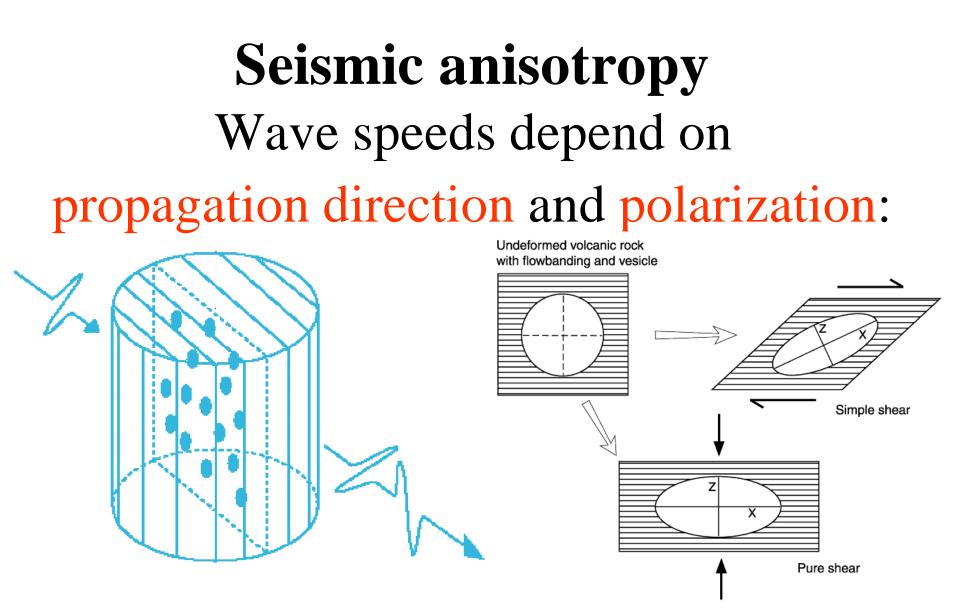
Nature isn' t always kind





Shen, Nature, 1998

Wolfe, Nature, 1997



No surprise: elasticity maps stress and strain, and both depend on three directions

Polarization anisotropy

- The particles of Love and Raleigh surface waves move in orthogonal directions
- SH and SV body waves sometimes exhibit clear splitting

Azimuthal anisotropy

 It's usually very hard to separate whether the time difference arises from an anisotropic direction or an isotropic wave speed difference (aka heterogeneity)

Why is this so hard?

For 3-D heterogeneity and slight anisotropy:

$$\delta\hat{\beta}_V = \delta\beta_V^{TI} + \frac{G_c}{2\rho\beta_V}\cos 2\theta + \frac{G_s}{2\rho\beta_V}\sin 2\theta \tag{3}$$

Maximum direction is related to fast axis of anisotropic minerals:

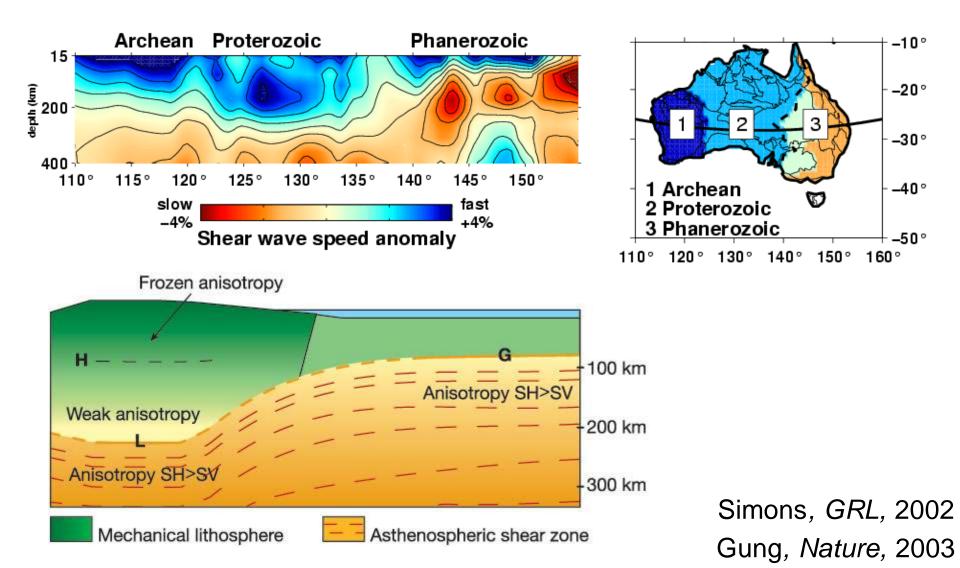
$$G = \sqrt{G_c^2 + G_s^2}$$
 and $\Psi_{\max} = \frac{1}{2} \arctan \frac{G_s}{G_c}$ (4)

It's very hard to tell whether a phase comes in early because it went through a fast patch or because it came in a fast direction – heterogeneity and anisotropy " trade off."

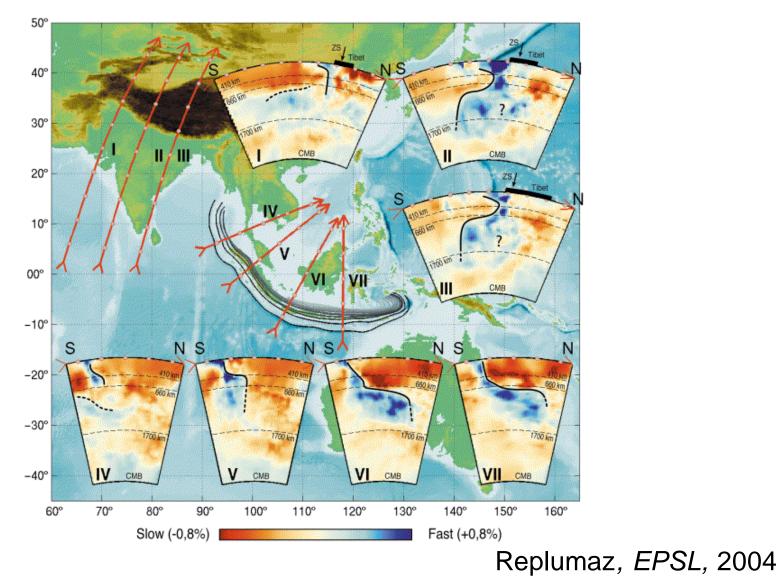
Questions to ask of the tomographer

- How is the forward model computed?
- What is the ray coverage?
- What (sort of) damping did you use?
- What does velocity estimation trade off with?
- What is the grid size / the correlation length?
- How are different data sets weighted?
- How far is the final from the starting model?
- Does the starting model have discontinuities?
- How is the surface/depth parameterization
- Is your sensitivity 1-D, 2-D, or 3-D?

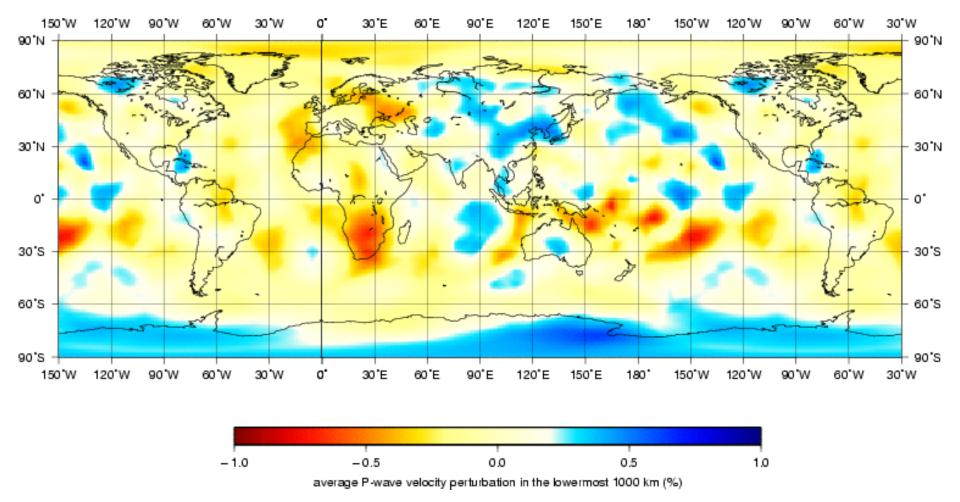
Journey to Middle Earth, Part I: The continental lithosphere



Journey to Middle Earth, Part II: Subduction zones

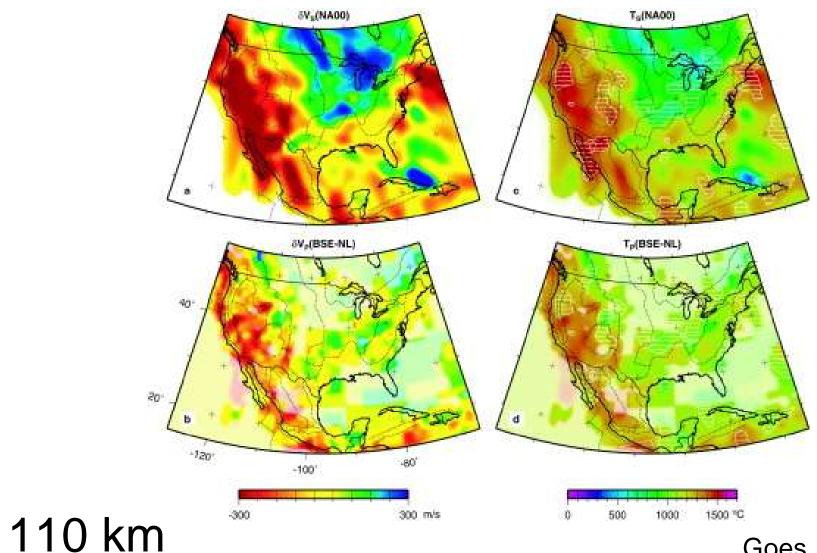


Journey to Middle Earth, Part III: Deep mantle plumes



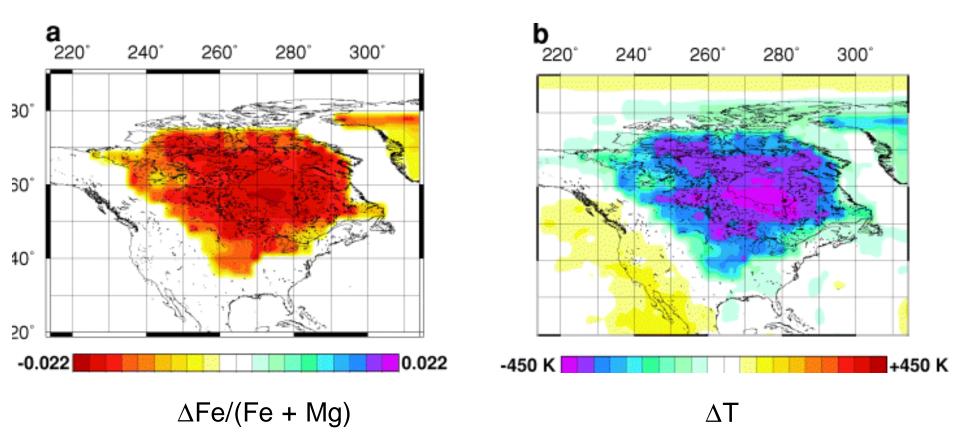
Montelli, Science, 2004

What does it all mean? Part I: **Temperature anomalies**



Goes, *JGR*, 2002

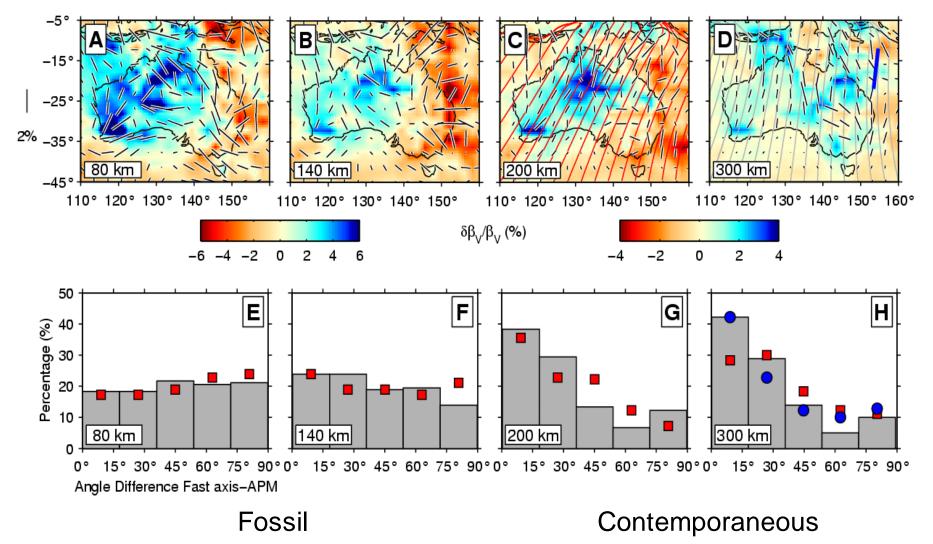
What does it all mean? Part II: Compositional anomalies



150 km

Perry, GJI, 2003

What does it all mean? Part III: **Deformation in the mantle**



Simons, EPSL, 2003

Conclusions

- Ultimately, seismology can only tell us where, or in which direction, wave propagation is faster or slower than a reference model
- The non-seismologist has to know the basics of inverse problem modeling, understand the sometimes poor constraints, and be critical
- Improvements are being made: better data, better forward models, better inversions
- As much as with the *a posteriori* interpretation, the community needs to help defining *a priori* acceptable starting models

References

- Buland, R., and C. H. Chapman, The computation of seismic travel times, Bull. Seism. Soc. Am., 73, 1271–1302, 1983.
- Bullen, K. E., and B. A. Bolt, An Introduction to the Theory of Seismology, 4 ed., Cambridge Univ. Press, Cambridge, UK, 1985.

Dahlen, F. A., and A. Baig, Fréchet kernels for body-wave amplitudes, Geophys. J. Int., 150, 440-466, 2002.

Dahlen, F. A., and J. Tromp, Theoretical Global Seismology, Princeton Univ. Press, Princeton, N. J., 1998.

Dalton, R., Marine seismology — A window on the inner Earth, Nature, 421, 10–12, 2003.

- Dziewonski, A. M., and D. L. Anderson, Preliminary Reference Earth Model, Phys. Earth Planet. Inter., 25, 297–356, 1981.
- Goes, S., and S. van der Lee, Thermal structure of the North American uppermost mantle inferred from seismic tomography, J. Geophys. Res., 107, 2050, doi:10.1029/2000JB000,049, 2002.
- Gung, Y., M. Panning, and B. Romanowicz, Global anisotropy and the thickness of continents, *Nature*, 422, 707–711, 2003.

Jackson, I. (Ed.), The Earth's mantle, Composition, structure, and evolution, Cambridge Univ. Press, 1998.

Karki, B. B., L. Stixrude, and R. M. Wentzcovitch, High-pressure elastic properties of major materials of earth's mantle from first principles, *Rev. Geophys.*, 39, 507–534, 2001.

- Kennett, B. L. N., E. R. Engdahl, and R. Buland, Constraints on seismic velocities in the Earth from travel-times, *Geophys. J. Int.*, 122, 108–124, 1995.
- Komatitsch, D., and J. Tromp, Spectral-element simulations of global seismic wave propagation I. Validation, Geophys. J. Int., 149, 390–412, 2002.
- Menke, W., Geophysical Data Analysis: Discrete Inverse Theory, vol. 45 of International Geophysics Series, 2nd ed., Academic Press, San Diego, Calif., 1989.
- Montelli, R., G. Nolet, F. A. Dahlen, G. Masters, E. R. Engdahl, and S.-H. Hung, Finite-frequency tomography reveals a variety of plumes in the mantle, *Science*, *303*, 338–343, 2004.
- Pillet, R., D. Rouland, G. Roult, and D. A. Wiens, Crust and upper mantle heterogeneities in the southwest Pacific from surface wave phase velocity analysis, *Phys. Earth Planet. Inter.*, 110, 211–234, 1999.
- Radon, J., Über die Bestimmung von Funktionen durch ihre Intergralwerte längs gewisser Mannigfaltigkeiten, Berichte Sächsische Akademie der Wissenschaften, 29, 262–277, 1917.
- Replumaz, A., H. Kárason, R. D. van der Hilst, J. Besse, and P. Tapponnier, 4-D evolution of SE asia's mantle from geological reconstructions and seismic tomography, *Earth Planet. Sci. Lett.*, 221, 103–115, 2004.
- Schaff, D. P., G. H. R. Bokelmann, G. C. Beroza, F. Waldhauser, and W. L. Ellsworth, High-resolution image of Calaveras Fault seismicity, J. Geophys. Res., 107, 2186, doi:10.1029/2001JB000,633, 2002.
- Shen, Y., S. C. Solomon, I. T. Bjarnason, and C. J. Wolfe, Seismic evidence for a lower-mantle origin of the iceland plume, *Nature*, 395, 62–65, 1998.

- Simons, F. J., and R. D. van der Hilst, Age-dependent seismic thickness and mechanical strength of the Australian lithosphere, *Geophys. Res. Lett.*, 29, 1529, doi:10.1029/2002GL014,962, 2002.
- Simons, F. J., and R. D. van der Hilst, Seismic and mechanical anisotropy and the past and present deformation of the australian lithosphere, *Earth Planet. Sci. Lett.*, 211, 271–286, 2003.
- Simons, F. J., A. Zielhuis, and R. D. van der Hilst, The deep structure of the Australian continent from surfacewave tomography, *Lithos*, 48, 17–43, 1999.
- Simons, F. J., R. D. van der Hilst, J.-P. Montagner, and A. Zielhuis, Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle, *Geophys. J. Int.*, 151, 738–754, 2002.
- Wolfe, C. J., I. T. Bjarnason, J. C. VanDecar, and S. C. Solomon, Seismic structure of the Iceland mantle plume, *Nature*, 385, 245–247, 1997.
- Zhao, D., and J. Lei, Seismic ray path variations in a 3D global velocity model, *Phys. Earth Planet. Inter.*, 141, 153–166, 2004.

More equations, for completeness

A linear system of equations

We're attempting to solve

$$\mathbf{d} = \mathbf{G} \cdot \mathbf{m} \tag{1}$$

(4)

Minimize penalty function of weighted error and model norms

$$\Phi = (\mathbf{d} - \mathbf{G} \cdot \mathbf{m}) \cdot \mathbf{A}^{-1} \cdot (\mathbf{d} - \mathbf{G} \cdot \mathbf{m}) + \mathbf{m} \cdot \mathbf{B}^{-1} \cdot \mathbf{m}$$
(2)

In matrix form, solve

$$\begin{bmatrix} \mathbf{A}^{-1/2} \cdot \mathbf{G} \\ \mathbf{B}^{-1/2} \end{bmatrix} \cdot \mathbf{m} = \begin{bmatrix} \mathbf{A}^{-1/2} \cdot \mathbf{d} \\ 0 \end{bmatrix}$$
(3)

Solution

$$\mathbf{m} = (\mathbf{B}^{-1} + \mathbf{G}^{\mathrm{T}} \cdot \mathbf{A}^{-1} \cdot \mathbf{G})^{-1} \cdot \mathbf{G}^{\mathrm{T}} \cdot \mathbf{A}^{-1} \cdot \mathbf{d}$$

Norm and first gradient regularization

For A^{-1} , use the inverse of the data covariance matrix C_d (BLUE) For B^{-1} , use the identity matrix I plus the squared first derivative

$$\mathbf{D_1} = \begin{pmatrix} \dots & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & \dots \end{pmatrix}$$
(5)

Minimize weighted penalty function

$$\Phi = (\mathbf{d} - \mathbf{G} \cdot \mathbf{m}) \cdot \mathbf{C}_{\mathrm{d}}^{-1} \cdot (\mathbf{d} - \mathbf{G} \cdot \mathbf{m}) + \alpha \,\mathbf{m} \cdot \mathbf{I} \cdot \mathbf{m} + \beta \,\mathbf{m} \cdot \mathbf{D}_{1}^{2} \cdot \mathbf{m}$$
(6)

Solution

$$\mathbf{m} = (\alpha \mathbf{I} + \beta \mathbf{D}_1^2 + \mathbf{G}^{\mathrm{T}} \cdot \mathbf{C}_{\mathrm{d}}^{-1} \cdot \mathbf{G})^{-1} \cdot \mathbf{G}^{\mathrm{T}} \cdot \mathbf{C}_{\mathrm{d}}^{-1} \cdot \mathbf{d}$$
(7)

Bayesian inversion

Gaussian a priori probability function on the model parameters

$$\rho(\mathbf{m}) \propto \exp\left(-\frac{1}{2}\mathbf{m} \cdot \mathbf{C}_{\mathrm{m}}^{-1} \cdot \mathbf{m}\right)$$
(8)

Maximize joint distribution of data, model, subject to $\mathbf{d} = \mathbf{G} \cdot \mathbf{m}$

$$\mathbf{m} = \mathbf{C}_{\mathrm{m}} \cdot \mathbf{G}^{\mathrm{T}} \cdot (\mathbf{C}_{\mathrm{d}} + \mathbf{G} \cdot \mathbf{C}_{\mathrm{m}} \cdot \mathbf{G}^{\mathrm{T}})^{-1} \cdot \mathbf{d}$$
(9)

Equivalent to (using a trivial matrix identity)

$$\mathbf{m} = (\mathbf{C}_{\mathrm{m}}^{-1} + \mathbf{G}^{\mathrm{T}} \cdot \mathbf{C}_{\mathrm{d}}^{-1} \cdot \mathbf{G})^{-1} \cdot \mathbf{G}^{\mathrm{T}} \cdot \mathbf{C}_{\mathrm{d}}^{-1} \cdot \mathbf{d}$$
(10)

So in choosing norm and gradient regularization we've identified

$$\mathbf{C}_{\mathrm{m}}^{-1} = \alpha \mathbf{I} + \beta \mathbf{D}_{1}^{2} \tag{11}$$

This imposes a particular form of the *a priori* covariance C_m

To Bayes or not to Bayes, what's the question?

A priori model covariance function with correlation length L

$$C_{\rm m}(\mathbf{r}_1, \mathbf{r}_2) = \sigma^2 \exp\left(-\frac{|\mathbf{r}_1, \mathbf{r}_2|^2}{2L^2}\right)$$
(12)

The following equivalence holds [Yanovskaya and Ditmar, 1990]

$$\mathbf{m} \cdot \mathbf{C}_{\mathbf{m}}^{-1} \cdot \mathbf{m} = \frac{1}{2\pi} \frac{1}{(\sigma L)^2} \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{L^2}{2}\right)^n \nabla^n \mathbf{m} \cdot \nabla^n \mathbf{m}$$
(13)

So indeed

$$\mathbf{C}_{\mathrm{m}}^{-1} = \alpha \mathbf{I} + \beta \mathbf{D}_{1}^{2} + \text{higher-order terms}$$
(14)

Exact resolution computation

For the linear problem, in a generalized sense,

$$\mathbf{m}^{\text{est}} = \mathbf{G}^{-g} \cdot \mathbf{d}^{\text{obs}} = \mathbf{G}^{-g} \cdot \mathbf{G} \cdot \mathbf{m}^{\text{true}}$$
(15)

The resolution matrix is given by

$$\mathbf{R} = \mathbf{G}^{-g} \cdot \mathbf{G} \tag{16}$$

In the Bayesian framework [Montagner, 1986]

$$R(\mathbf{r}, \mathbf{r}') = \delta(\mathbf{r} - \mathbf{r}') - \frac{C_{\rm p}(\mathbf{r}, \mathbf{r}')}{C_{\rm m}(\mathbf{r}, \mathbf{r}')}$$
(17)

This represents the degree to which we are able to reduce the *a priori* covariance $C_{\rm m}$ of the model parameters (the null-state of information) by obtaining the *a posteriori* covariance structure $C_{\rm p}$ after the inversion.