MYRES I: Heat, Helium & Whole Mantle Convection

Constraints on Mantle Structure from Surface Observables

Magali Billen University of California, Davis Department of Geology

The Goal

Use observations of surface deformation to determine the density and rheologic structure of the mantle.

Geoid/Free-air gravity Dynamic topography Post-glacial rebound Plate motions

Outline

- →The Observations
- The Game (Methods)
- Robust Constraints on Mantle Structure.
- Beyond the Layered Mantle
 - Recent Results
 - Rheology
 - Challenges
- Conclusions

Geoid

Measured by modelling satellite orbits.
 – Spherical harmonic representation, L=360.

From, http://www.vuw.ac.nz/scps-students/phys209/modules/mod8.htm

Range +/- 120 meters

Free-Air Gravity

- Derivative of geoid (continents)
- Measured over the oceans using satellite altimetry (higher resolution).

Free-Air Gravity

• Most sensitive to *shallow crustal structure* at short wavelengths (< 100 km).

 Shallow density structure may *mask or obscure* deeper structures.

Geoid/Free-air Gravity Spectra

Dynamic Topography

From: Lithgow-Bertelloni & Silver, Nature 1998 (fig 1) – Corrections for lithosphere age, sediment loading...

- Difficult to measure, poorly known.
- Use magnitude as constraint (+/- 900 meters).

Post-Glacial Rebound (PGR)

- Glacial Isostatic Adjustment (GIA).
 - returning to isostatic equilibrium.
 - Unloading of the surface as ice melts (rapidly).

From:

http://www.pgc.nrcan.gc.ca/geodyn/

docs/rebound/glacial.html

Post-Glacial Rebound (PGR)

- Drop in apparent sealevel, caused by uplift of the land.
- 100' s of meters in < 18,000 years.
- Very well constrained in a few locations.
- Moderate quality in lots of locations.

Uplift/Subsidence (meters)

From http://www2.umt.edu/geology/faculty/sheriff/

Plate Motion

- Well-known for the present time.
- Accuracy degrades for times further in the past.

Data: Argus & Gordon 1991 (NUVEL-NNR), Figure: T. Becker

Summary of Surface Observations

Observation

Quality

Post Glacial Rebound Plate Motion

variable (center) good (recent)

Dynamic Topography - surface/670 km/CMB Geoid Free-air Gravity

poor (magnitude) good (<100 km) good (shallow)

Building the Mantle Structure

Methods - 1

- Solve coupled flow & gravitational potential equations for:
 - *instantaneous* deformation (flow, surface deformation, geoid) *relative* viscosity variations.
 - *time-dependent* deformation (relative sea-level curves, plate motions) for *absolute* viscosity and variations.
- Internal density structure (except PGR):
 - seismic tomography, slab seismicity, history of subduction.
 - scaling to density.

Methods - 2

- Analytic Methods
 - Radial/1-D or limited lateral structure.
 - Forward and inverse models.
 - How many layers (unknowns) can be determined?
 - Predict multiple observations.
- Numerical Models
 - Radial & strong lateral viscosity variations.
 - Forward models (too costly for inversions?).
 - Global and/or regional studies.

"Robust" Constraints on Viscosity Structure (1)

• Geoid:

- Very long wavelength structure explained by lower mantle structure.
- Jump or increase in viscosity from upper to lower mantle.

Observed

Predicted

From:

Hager & Richards,

phil trans 1989, (fig 1, 5a)

Post-Glacial Rebound (PGR)

- Rate of rebound:
 - sensitive to *absolute viscosity*.
- Depends on:
 - ice-load size/shape,
 sea-level measurements
 & unloading history.
 - lateral variations in elastic plate properties.

From:

http://www.pgc.nrcan.gc.ca/geodyn/

docs/rebound/glacial.html

"Robust" Constraints on Viscosity Structure (2)

- Post-glacial rebound:
 - Average *upper* (<1400 km) mantle viscosity.
 - Haskell value, $\eta = 10^{21}$ Pa s.

Start with jump

Mitrovica, JGR 1996 (fig 5)

Frechet Kernels (depth sensitivity)

"Robust" Constraints on Viscosity Structure (3)

 Chemical boundary to flow at 670 km inconsistent with small (~10 km) observed dynamic topography.

Plate motions

- Purely radial viscosity structure
 - *poloidal motion* (divergence/ convergence).
- How to use in modelling?
 - Impose as boundary conditions.
 - Predict from model (defined plate regions).

Bertelloni,

"Robust" Constraints on Viscosity Structure (4)

- *Weak asthenosphere* stabilizes plate motion.
- Lateral variation in strength (fault/shear zone)
 - *rigid* plates & *toroidal motion* (strike-slip).

Richards et al, Gcubed, 2001 (fig. 3)

Tackley G3, 2000a (fig. 8)

Summary of Surface Observations

Observation

Resolution

Post Glacial Rebounc^{Note:} Absolute viscosity Plate Motions trades-off with assumed density

margins & asthenosphere.

Dynamic Topography Geoid Free-air Gravity

No boundary to flow. Deep, long wavelength. Shallow, intermediate-long wavelengths

"Robust" Mantle Structure

Outline

- →The Observations
- →The Game (Methods)
- →Robust Constraints on Mantle Structure.
- Beyond the Layered Mantle
 - Recent Results
 - Rheology
 - Challenges
- Conclusions

Can we go further?

- What is the *resolving power* of the observations?
 - How many layers?
 - What range of viscosity?
 - Are model results *unique*?
 - How are models affected by *a priori assumptions*?

- 1) Get to know the data:
 - need observations that are *sensitive* to variations in mantle structure.

Current Mantle Structure Models - Radial

- Predict Geoid & Dynamic Topography
- Variance reduction (L=2-6): 74%
 - All three families work

 $H = 48K \ DC = 8%$ $H = 2K \ DC = 8%$

(9)

Panasyuk & Hager, GJI 2000 (fig 5 & 6).

Current Mantle Structure Models - Radial

- Observations:
 - free-air gravity/geoid,
 - plate divergence,
 - excess CMB ellipticity
- Irregular radial profile
 - L=2-20 geoid
 - Variance reduction
 77%
 - Compared to 65% for two layer model.
- Is this result unique?

Challenges

- 1) Sensitive observations.
- 2) Limitations of methods:
 - Analytic methods
 - Radial viscosity structure.
 - Linear (*Newtonian*) rheology.

Viscous Rheology

- Experimental data:
 - Viscosity is strongly dependent on pressure temperature, stress (strain-rate), grain size, water, melt, & mineralogy ...

Flow Law:

$$\dot{\epsilon} = A\sigma^{n}d^{-p}C_{OH}^{r}e^{-\alpha\phi}\exp\left[-\frac{E+PV}{RT}\right]$$

$$Viscosity:$$

$$\eta = \frac{\sigma}{\dot{\epsilon}}$$

Viscous Rheology

- Olivine: well-constrained.
 - peridotite \neq olivine.
- Deep-earth mineralogy
 - Need better constraints
 - e.g. perovskite theoretical.
- Educated guesses:
 - grain size,
 - water & melt concentrations.

Should we go further?

- Experimental data
 - strong viscosity
 variations.
- 3-D dynamics
 - *slab penetration* into strong lower mantle,
 - *mixing* of geochemical signatures,
 - origin of *plate tectonics*.
- Yes \rightarrow new challenges.

Challenges

- 1) Sensitive observations.
- 2) Limitations of methods:
 - Analytic methods
 - Radial viscosity structure.
 - Linear (*Newtonian*) rheology.

 Realistic rheology is numerically expensive *memory/time/cpus*.

• Stiff slab in the mid-mantle vs the lower mantle: *reverses sign of the geoid Zhong & Davies EPSL 1999 (fig 5)*

Illustrative Example (2)

- Dense sinker
- Low Viscosity Zone
- LVZ modifies dynamic topography

Billen, Appendix, Thesis Caltech 2001.

Two Illustrative Examples

- What is the magnitude of LVVs in
 - upper mantle (weak regions & strong slabs)?
 - lower mantle (strong slabs)?
- May be right for the wrong reasons?
 - Lateral viscosity variations can *reverse* the sign of the geoid.

Is a radial viscosity structure still a useful parameterization?

Current Mantle Structure Models - Lateral

(fig 10, 11)

Geoid: Predicted Observed Cadek & Fleitout, GJI, 2003-100 m 0 +100 m • Observations

- Geoid.
- Dynamic Topography.
- Inversion for LVV in top 300 km.
 - Up to L=4.
 - Inhibited flow at 670.
 - Maximum variance reduction 92%
 - As good as 5 layer radial model

Challenges

- 1) Sensitive observations.
- 2) Limitations of methods.
- 3) A priori assumptions:
 - Simple relationships between *viscosity* & *seismic velocity* boundaries.

Viscosity & Seismic Structure

- Are seismic discontinuities, viscosity discontinuities?
- Inversions can depend on starting structure.

Challenges

- 1) Sensitive observations.
- 2) Limitations of methods.
- 3) A priori assumptions:
- 4) Poorly known observables:
 - Seismic velocity-to-density scaling:
 - Temperature and compositional buoyancy
 - Dynamic topography on the surface and CMB:
 - not well known, but also contributes to the geoid
 - Post-glacial rebound (assumes ice-load).

Seismic, Density & Viscosity Structure

Viscosity & Seismic Structure

Kellogg et al Science, 1999

How can we use surface observations to detect or rule-out this kind of structure?

Conclusions

- Unnecessary Baggage??
 - Radial viscosity structure.
 - Linear (Newtonian) viscosity.
 - Seismic boundaries = viscosity boundaries.
- *Inversions* how can these be extended? Unique?
- Use *forward* models to explore how complexities affect dynamics.

Conclusions

- Surface observables are *not enough*.
- Better constraints on *connections to* seismic & mineralogical observations.
- Combine with *observations that are sensitive to the subsurface* behavior:
 - Seismic anisotropy.
 - Geochemical/petrologic constraints.
 - More experimental constraints on mineral physics and rheology.