

Noble Gas Constraints on Mantle Structure and Convection

Sujoy Mukhopadhyay Harvard University

Which (if any) of these views of the mantle are correct?

What are the constraints on mantle reservoirs provided by the noble gases?

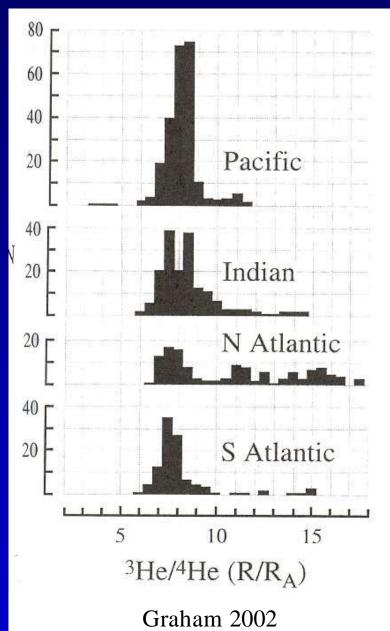
- what we know, what we infer, and what we do not understand

Outline

- Helium, Neon, and Argon isotopic composition of Mid Ocean Ridge Basalts (MORBs) and Ocean Island Basalts (OIBs) – observations and constraints
- Missing Argon problem
- He Heat paradox
- Combined noble gases and lithophile tracers (Sr, Nd, Pb)
- Noble gas concentrations and elemental ratios- challenges in reconciling isotopic and elemental composition

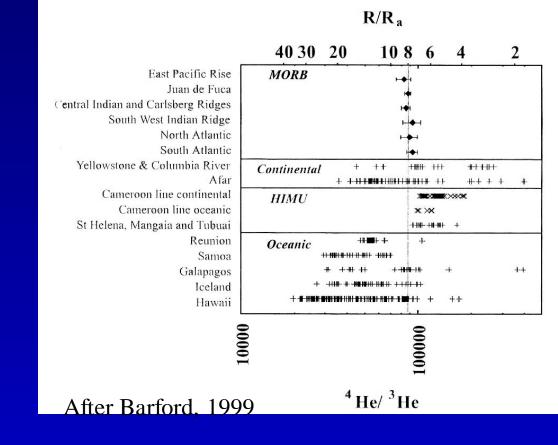
He isotope geochemistry

- Two isotopes of helium: ³He and ⁴He
 ³He is primordial
 ⁴He produced by radioactive decay of U and Th
- He isotopes are a measure of time-integrated (U+Th)/³He ratio:


$$\frac{{}^{4}\text{He}}{{}^{3}\text{He}} = \left(\frac{{}^{4}\text{He}}{{}^{3}\text{He}}\right)_{o} + 8\frac{{}^{238}\text{U}}{{}^{3}\text{He}}\left(e^{\lambda_{238}t} - 1\right) + 7\frac{{}^{235}\text{U}}{{}^{3}\text{He}}\left(e^{\lambda_{235}t} - 1\right) + 6\frac{{}^{232}\text{Th}}{{}^{3}\text{He}}\left(e^{\lambda_{232}t} - 1\right)$$

- Helium behaves as an incompatible element during mantle melting (i.e. prefers melt over minerals)
- Helium *expected* to be more incompatible than U and Th during mantle melting
- Helium not recycled back into the mantle

If so high ³He/⁴He ratios reflect less degassed mantle material


Histogram of He isotope ratios in mid-ocean ridge basalts (MORBs)

- ³He/⁴He ratios reported relative to the atmospheric ratio of 1.39 x 10⁻⁶
- No relation between isotopic composition and spreading rate but the variance is inversely related to spreading rate
- Either reflects
 - efficiency of mixing in the upper mantle
 - differences in degree of magma homogenization

Comparison of He isotope ratios from selected MORs, OIBs, and continental hotspots

- The mean ³He/⁴He ratio from different ridge segments is nearly identical although the variance is different
- OIBs are much more variable
- ³He/⁴He ratios less than MORBs are frequently associated with radiogenic Pb (HIMU) and reflects recycled components in the mantle

He isotope ratios in ocean island basalts (OIBs)

35

30

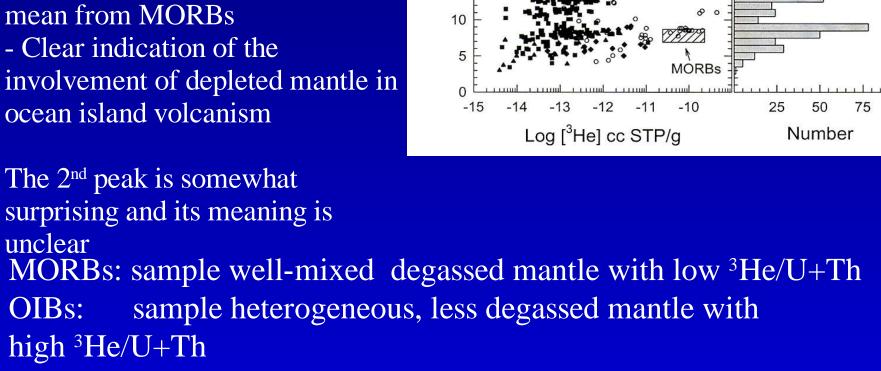
25

20

15

Glass

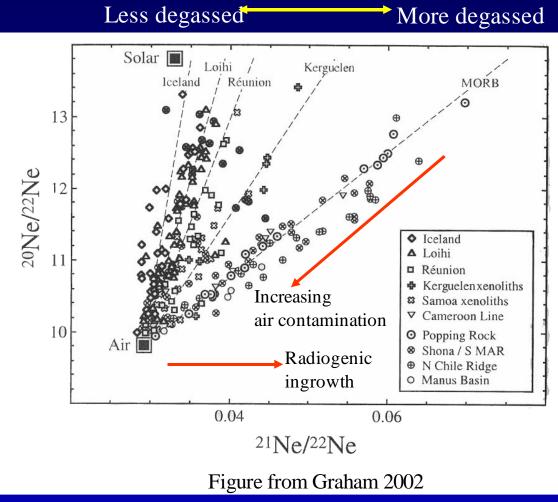
Pyroxene


Xenolith

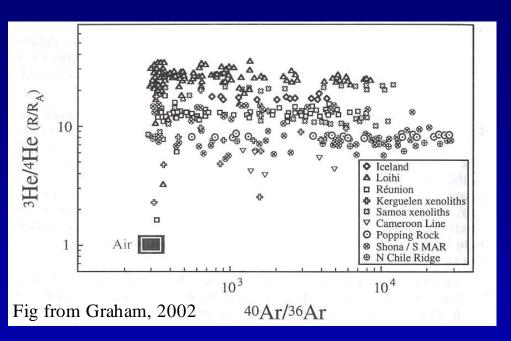
Farley and Neroda 1998

100

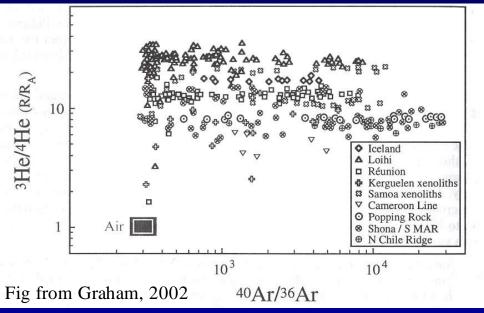
- OIBs display a very large range in \bullet He isotopic composition
- He isotopic distribution has a double-peak; maxima at 8 R_A and $13 R_{A}$
- 'He/⁴He (R_A) The first maxima is identical to the mean from MORBs - Clear indication of the involvement of depleted mantle in ocean island volcanism


 \bullet

Geochemistry of Ne

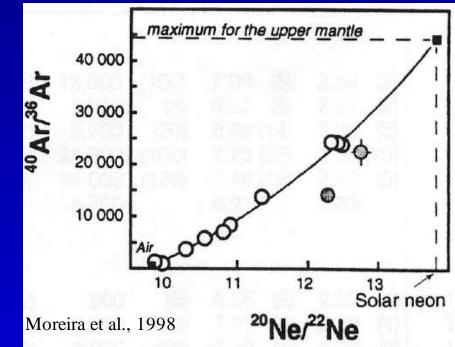

- Neon has three isotopes ²⁰Ne, ²¹Ne, and ²²Ne
- ²⁰Ne is primordial
- ²¹Ne is produced by nucleogenic reactions in the mantle:
 - ${}^{18}O(\alpha, n){}^{21}Ne$ and ${}^{24}Mg(n, \alpha){}^{21}Ne$
 - $\alpha \text{ from U decay; neutrons from spontaneous fission;}$ $production ratio of ^21Ne/4He is ~10^{-7}$
- ²²Ne is primordial. There may be a small nucleogenic production of
 ²²Ne, [¹⁹F(α, n)²²Ne] but it is likely to be negligible
- ²⁰Ne/²²Ne does not vary in the mantle derived rocks; ²¹Ne/²²Ne does
- Ne is expected to be more incompatible than U and Th during mantle melting => low ²¹Ne/²²Ne ratios reflect less degassed mantle material

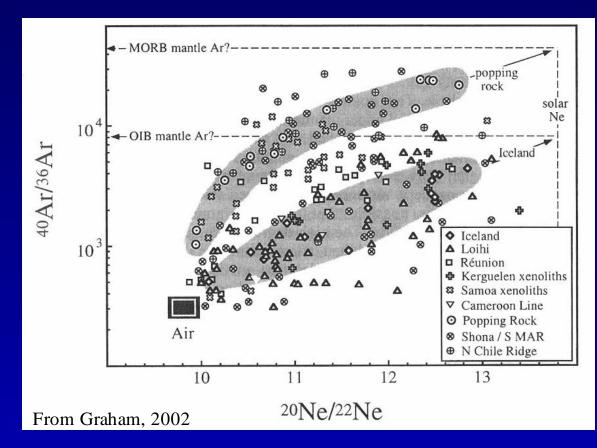
Ne isotopic composition of mantle derived rocks



- Mantle ²⁰Ne/²²Ne ratio is fixed; ²¹Ne/²²Ne varies because of radiogenic ingrowth and varying degrees of degassing
- Different ocean islands have distinct ²¹Ne/²²Ne ratios; either reflects varying amounts of MORB mantle addition to the OIB source(s) or different parts of the mantle have been degassed and processed to different degrees

- Three stable isotopes of Ar, ³⁶Ar, ³⁸Ar, ⁴⁰Ar
- ³⁶Ar and ³⁸Ar are primordial
- ⁴⁰Ar produced by radioactive decay of ⁴⁰K
- Ar is expected to be more incompatible than K during mantle melting
- If so high ⁴⁰Ar/³⁶Ar reflects degassed mantle material




- 1% Ar in the atmosphere
- Significant air contamination for Ar
- Even when ³He/⁴He ratios are as high as 30 R_A, ⁴⁰Ar/³⁶Ar ratios can be atmospheric

- 1% Ar in the atmosphere
- Significant air contamination for Ar
- Even when ${}^{3}\text{He}/{}^{4}\text{He}$ ratios are as high as 30 R_A, ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ ratios can be atmospheric

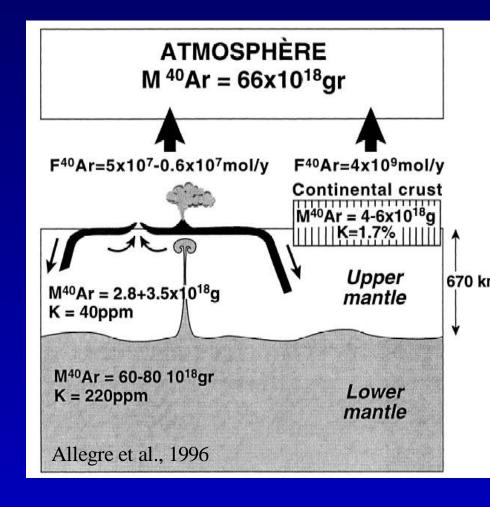
- ²⁰Ne/²²Ne ratio in the mantle does not vary
- Ar isotopic ratios in mantle derived rocks can be corrected for air contamination by extrapolating the ⁴⁰Ar/³⁶Ar ratio to the upper mantle ²⁰Ne/²²Ne value

- MORB mantle 40 Ar/ 36 Ar values are ~ 40,000
- OIBs have lower ⁴⁰Ar/³⁶Ar ratios; reasonable limit is 8000
- A value of 8000 *does not* represent pristine mantle material; must indicate some processing, although significantly less degassed than the mantle source sampled by MORBs

The picture that emerges so far.....

- 2. MORBs are more homogenous compared to OIBs
- 4. Many OIBs sample a mantle source that is significantly less degassed than the mantle source tapped by MORBs

Evidence for undegassed reservoir: The missing Argon problem


- K content of Earth derived from the K/U ratio of 12700 in MORBs and U content of 20-22.5 ppb
- Implied K content of bulk Earth is 250-285 ppm
- Total ⁴⁰Ar produced over Earth history = $140-156 \times 10^{18} \text{ g}$
- 40 Ar in the atmosphere = 66 x 10¹⁸ g (~50%)
- 40 Ar in the crust = 9-12 x 10¹⁸ g

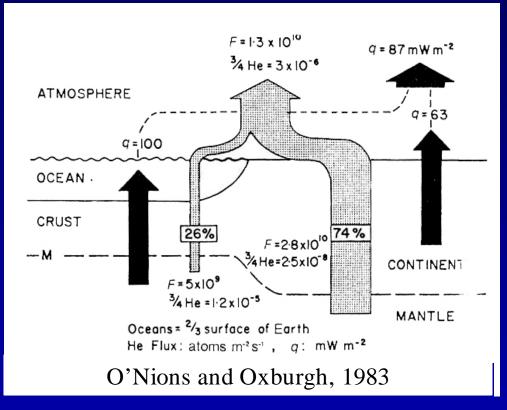
63-80 x 10¹⁸ g of ⁴⁰Ar has to be in the mantle

Evidence for undegassed reservoir: The missing Argon problem

I) Constraints from ⁴⁰Ar flux

- ⁴He flux at ridge = 9.46 x 10⁷ moles/yr
- ⁴He/⁴⁰Ar ratio in MORBs 2-15
 => ⁴⁰Ar flux 0.63-5 x 10⁷ moles/yr
- Mass of oceanic lithosphere passing through ridges = 5.76 x 10¹⁷ g/yr
 If MORB mantle representative of entire mantle and if lithosphere completely degassed, ⁴⁰Ar content in mantle 1.4-1.8 10¹⁸g
 - Lower than the 63-81 x 10¹⁸g estimated (Allegre et al., 1996) and requires a hidden reservoir for ⁴⁰Ar

If MORB mantle extends to 670 km, 0.6-4.6 x 10¹⁸ g of ⁴⁰Ar in upper mantle and 59 x 10¹⁸ g of ⁴⁰Ar in the lower mantle, corresponding to a K concentration of about 230ppm; consistent with K content of bulk Earth

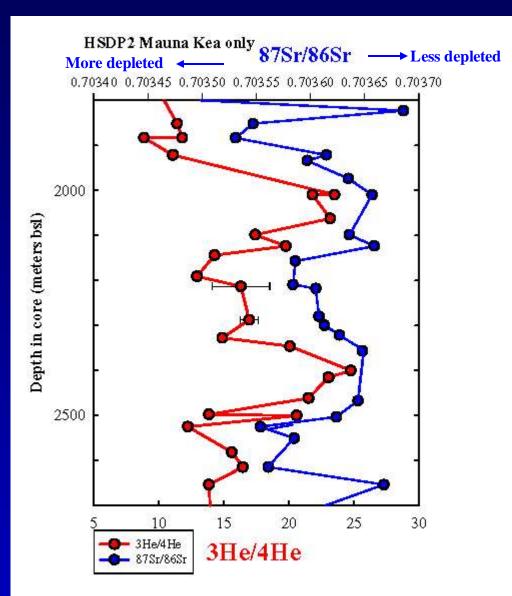

Evidence for undegassed reservoir: The missing Argon problem

II) Constraints from Potassium content

- K content of MORB source is 40-50 ppm; if representative of entire mantle produces 22-28 x 10¹⁸ g of ⁴⁰Ar
 -significantly less than the 63-80 x 10¹⁸ g of ⁴⁰Ar calculated to be in the mantle
- If mantle is layered at 670 km 7.3-9. x 10¹⁸ g ⁴⁰Ar in the upper mantle
 => 54-74 x 10¹⁸ g in the lower mantle, corresponding to an K content of 230 ppm in the lower mantle

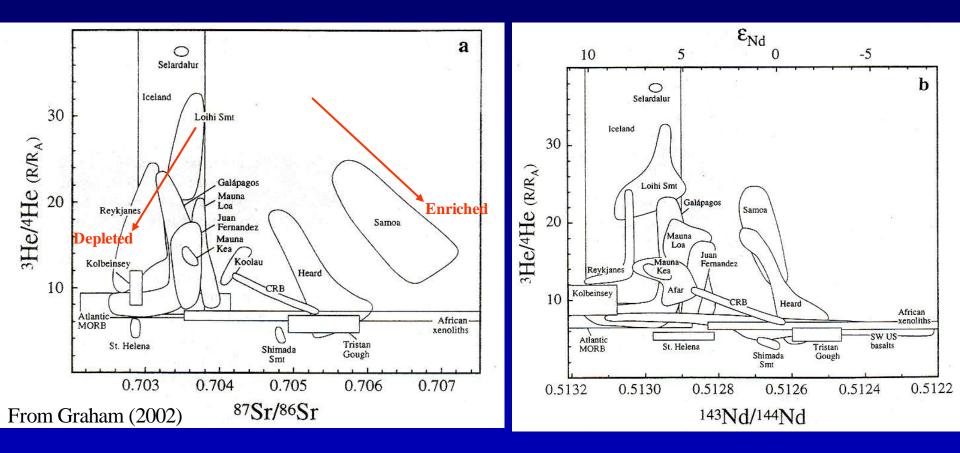
Bottom line: The constraints from ⁴⁰Ar require some sort of layering or a hidden reservoir in the mantle Any wiggle room? Maybe we do not know the K/U ratio of the mantle as well as we think (e.g., Albarede, 1998; Lassiter, 2002)

The Helium Heat Paradox

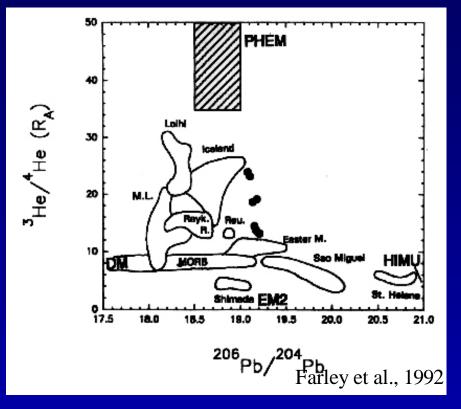

- ~75% of He entering the atmosphere is from continental crust
- ~25% from the mantle
- ~10% of the He from the mantle is primordial and the rest is radiogenic

The Helium Heat Paradox

- ⁴He produced by radioactive decay of U and Th
- 10⁻¹² J of energy is liberated for each alpha decay
- The radiogenic ⁴He flux from the mantle corresponds to 2.4 TW of heat production
- Terrestrial heat flux is 44 TW (Pollack et al., 1993) -- 5-10 TW from crust (e.g., Rudnick and Fountain, 1995), 3-7 from core (Buffett et al., 1996); and 27-36 TW from the mantle
- Of 27-36 TW from the mantle, 18–22 is secular cooling; radiogenic heat is between 9-14 TW, factor of 4-6 greater than the 2.4 TW of heat that is supported by the ⁴He flux
- Implies a boundary layer in the mantle that passes heat but mostly retains ⁴He (O'Nions and Oxburgh, 1983)


Relationship between He and other lithophile tracers

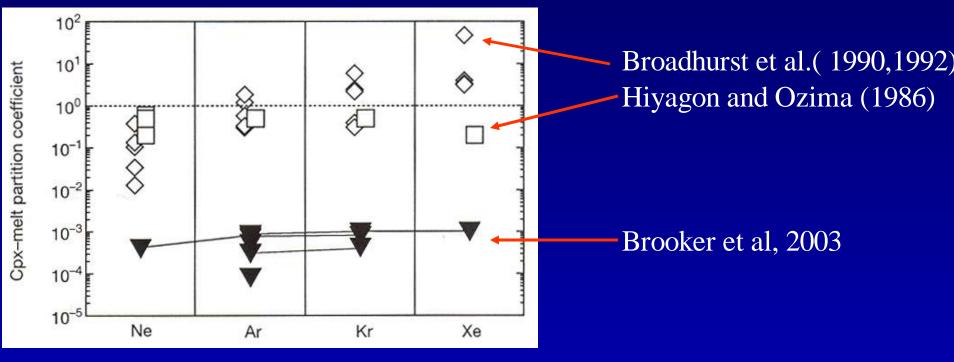
- He isotopic variations are strongly coupled to variations in other lithophile tracers (Sr, Nd, Pb)
- Higher ³He/⁴He ratios are associated with *less* depleted ⁸⁷Sr/⁸⁶Sr isotopic signal
- ⇒ high ³He/⁴He ratios are indicative of less degassed mantle



Above data is from the 3 km deep drill hole from Mauna Kea, Hawaii (Kurz et al., 2004)

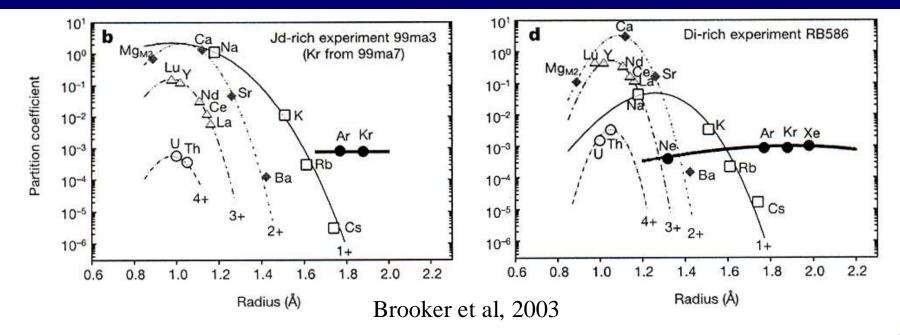
Global relationship between He and other lithophile tracers: The wormograms

Global relationship between He and other lithophile tracers


- Observations:
- Highest ³He/⁴He ratios occur at intermediate values of Sr, Nd, and Pb and not associated with either the most depleted or most enriched mantle end-members
- Isotopic arrays from individual ocean islands convergence to a composition that is internal to the mantle end-members defined in Sr, Nd, and Pb isotopic space

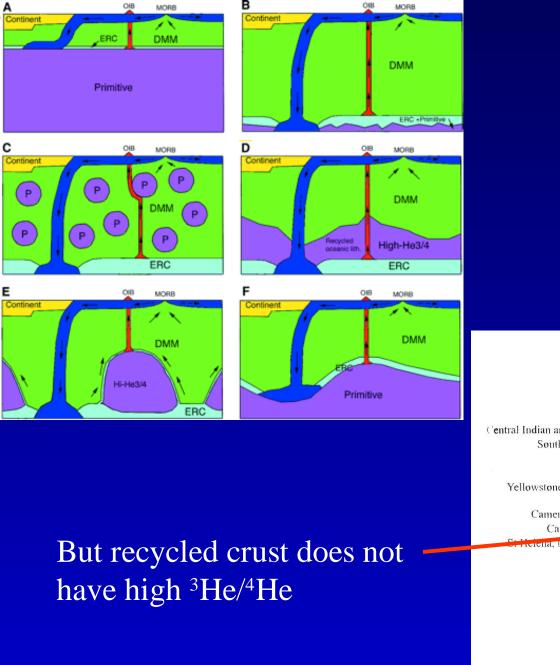
Global relationship between He and other lithophile tracers

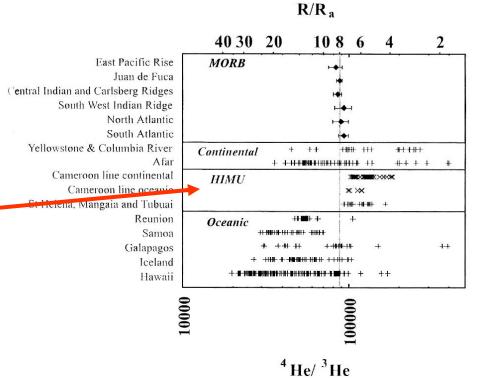
Inferences:


- High ³He/⁴He ratios from a single, relatively undegassed mantle source that is characterized by well defined Sr, Nd, and Pb isotopic composition
- ³He/⁴He is one of the reasons to come up with a component (PHEM, FOZO, C) that is internal to the other mantle endmembers in Sr, Nd, and Pb isotopic space (EM1, EM2 HIMU, DM)
- FOZO/C has Sr, Nd, Pb isotopic composition that is slightly depleted in comparison to primitive mantle; PHEM is primitive
- But there appears to be a problem: mixing hyperbolas seem to curve the wrong way... undegassed reservoir should have higher He concentration

Partition coefficient for noble gas

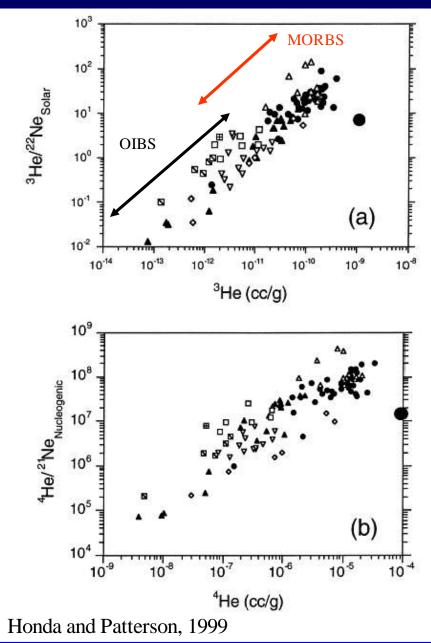
Cpx-melt partition coeffcients

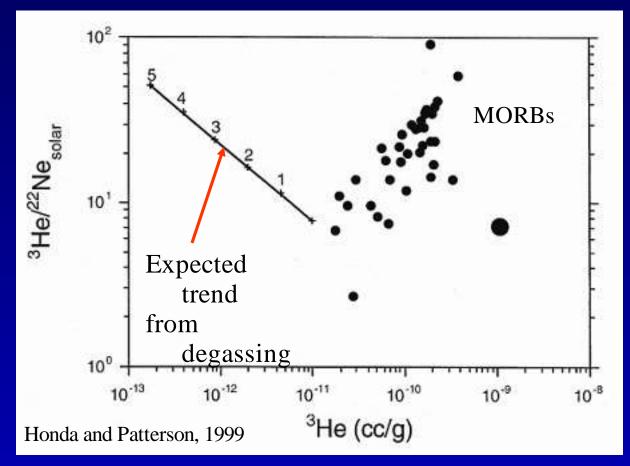

Hard to determine experimentally because of the formation of fluid inclusion; noble gases will prefer a fluid over a melt But ability to measure partition coefficient getting better **Partition coefficient of the noble gases** Are the noble gases (⁴He, ²¹Ne, ⁴⁰Ar) really more incompatible than their radiogenic parents (e.g., U, Th, K)?



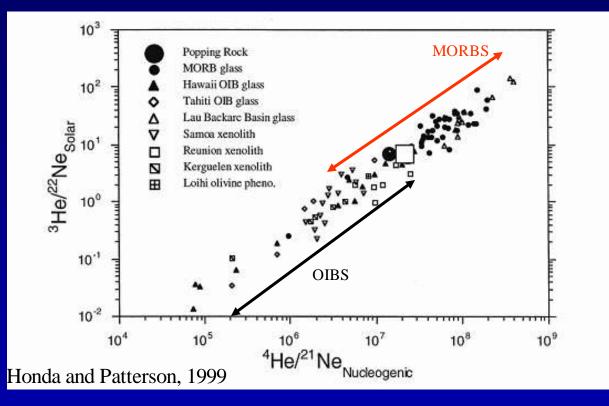
- For clinopyroxene, Ar slightly more incompatible than K
- Experimental data still not good enough to show conclusively how He behaves with
 - respect to U and Th
- Time integrated ratios however provide some insights; for example high ³He/⁴He

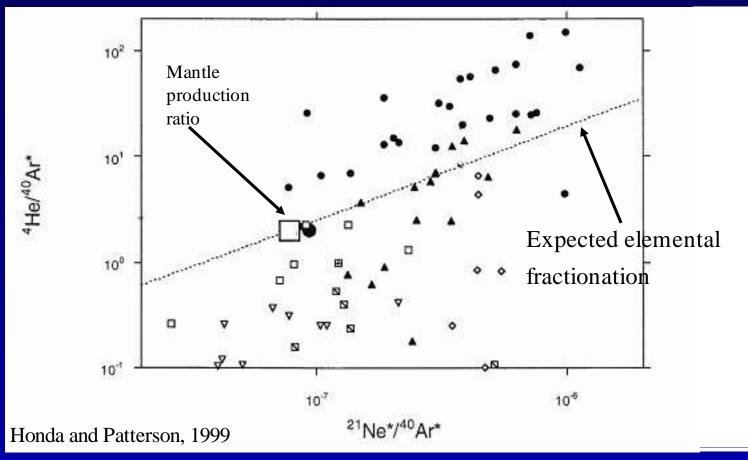
ratios are never associated with the most depleted isotopic signatures of Sr and


Nd,

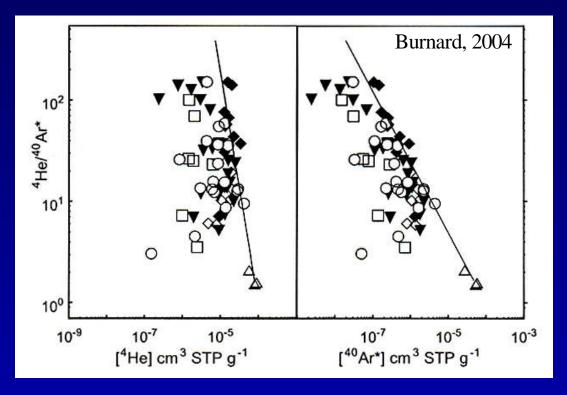


Noble Gas Concentrations


- Previously noted that based in the curvature of mixing hyperbolas He concentrations might be higher in MORBs than OIBs
- The figures show that is indeed the case
- Maybe not too surprising since most OIBs are erupted at shallower water depths than MORBs; so would be degassed more
- Turns out that such an explanation is not really tenable...



He more soluble in basaltic melt than Ne, which is more soluble than Ar => With increasing degassing He/Ne ratios increase and Ne/Ar ratios increase


Solubility controlled degassing does not explain the differences in gas concentration between MORBs and OIBs.

 Fractionation has to be recent, otherwise the slope would not be 1 and the ⁴He/²¹Ne ratio would have evolved back to the production value of ~10⁷

- OIBs are not depleted in He; rather MORBs are enriched in He with respect to Ne and Ar
- Enrichment of He with respect to Ar significantly greater than predicted for simple mass dependent process

- The Ar concentration decreases with degassing as expected
- For some MORBs suites, as ⁴He/⁴⁰Ar ratio increases (more degassed), He concentration increases as well!! So the problem appears to be with He

Open question: What controls the noble gas concentration and elemental ratios in oceanic basalts?

Conclusion

- From ³He/⁴He, ²¹Ne/²²Ne, and ⁴⁰Ar/³⁶Ar ratios we know there exists a *relatively undegassed* reservoir in the Earth that is tapped at many ocean islands; MORBs sample a more degassed and processed mantle source
- An undegassed reservoir is supported by ⁴⁰Ar and the helium heat paradox
- Based on correlations between ³He/⁴He ratios and other isotopic tracers (Sr, Nd, Pb), the undegassed reservoir has the composition of primitive mantle, or is slightly depleted relative to primitive mantle; the slight depletion is consistent with the inferred ⁴⁰Ar/³⁶Ar ratio of ~8000 for the OIB source

Conclusion (continued)

- Noble gas elemental ratios indicate that MORBs have higher He concentration than OIBs that cannot be explained away by simple magmatic degassing
- The higher He concentration in MORBs reflects a recent enrichment of He, and not likely to be a characteristic of the MORB source itself. The physical mechanism through which MORBs acquire a high He concentration remains unidentified

Important questions that need to be answered

- Are the noble gases really more incompatible than their radioactive parents U, Th, and K during partial melting? Can the noble gases be partitioned into the core?
- What physical mechanism(s) control gas loss during mid ocean ridge and ocean island volcanism? Can we ' see through' such gas loss processes to infer the concentrations in the different mantle reservoirs?
- What are the characteristics of the heavy noble gases in OIBs and what role does subduction play in recycling of the heavy noble gases (Ar-Xe)?