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Rheology

Elasticity vs. viscous deformation

η = O (1021) Pa s = viscosity 
µ= O (1011) Pa    = shear modulus = rigidity
τ = η / µ = O(1010) sec = O(103) years = Maxwell time



Elastic deformation

In general:

σij = Cijkl εkl 

(in 3-D 81 degrees of freedom, in general 21 independent)

For isotropic body this reduces to Hooke’s law:

 σij = λεkkδij + 2µεij

with λ and µ Lame’s parameters, εkk = ε11 + ε22 + ε33

Taking shear components (       ) gives definition of rigidity:

σ12 = 2µε12

Adding the normal components ( i=j ) for all i=1,2,3 gives:

σkk = (3λ + 2µ) εkk = 3κεkk 

with κ = λ + 2µ/3 = bulk modulus

ji ≠



Linear viscous deformation (1)

Total stress field = static + dynamic part:

Analogous to elasticity …
General case:

Isotropic case:
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Linear viscous deformation (2)

Split in isotropic and deviatoric part (latter causes 
deformation):

ijijijkkijij pδσδσσσ +=−=
3

1
'

ijkkijij δεεε 
3

1
' −=

which gives the following stress:
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With compressibility term assumed 0 (Stokes condition                   )

(                             bulk viscosity)
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Non-linear (or non-Newtonian) deformation
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nAτε =General stress-strain relation:
1=n : Newtonian
1>n : non-Newtonian

∞→n : pseudo-brittle

Effective viscosity

Application: different viscosities under oceans with different absolute plate motion,
anisotropic viscosities by means of superposition (Schmeling, 1987)



Microphysical theory and observations
Maximum strength of materials (1)

‘Strength’ is maximum stress that material can resist
In principle, viscous fluid has zero strength.
In reality, all materials have finite strength.

(Ranalli, 1995)

Elastic deformation until atom jumps to next equilibrium position.

So theoretical strength )(µσ O=



Microphysical theory and observations
Maximum strength of materials (2)

(Ranalli, 1995)

However, from laboratory measurements:

Shear strength                       due to:
•Structural flaws
•Cracks
•Vacancies
•Dislocations
•Subgrain boundaries

)10( 4 µ−= O

Stress concentration makes deformation possible under smaller stresses 
(compare to breaking/tearing of sheet of paper)



(Schubert, Turcotte & Olson, 2001)

Diffusion creep



(Ranalli, 1995)

Dislocation creep



Theoretically many different models: only a few relevant for 
Earth

• (Climb-controlled) dislocation creep or powerlaw creep: 
gliding of dislocations controlled by the climb rate around 
impurities/obstacles:

• Diffusion creep (Newtonian, linear creep):
• Nabarro-Herring creep (diffusion through grain)
• Coble creep (diffusion along grain boundary) 

• Peierl’s stress mechanism (low-T plasticity): dislocation glide
• Grain-boundary sliding (superplasticity)
• Pressure-solution
• Brittle deformation, Byerlee’s ‘law’

Steady state creep models

m=2-3

∝DSD  
n

∝
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RT 



Strength of the Lithosphere and Mantle 

Experimental data for olivine



Strength of the Lithosphere and Mantle

(Turcotte and Schubert, 2002)

Collection of rheological data 
for different materials



See Hirth & Kohlstedt (2005) 
for olivine in the upper mantle 



Laboratory experiments: large temperature, 
strain-rate & grain-size dependence.



Dislocation creep decreases viscosity where the 
strain-rate is more than the transition value.



• Non-deforming regions remain highly 
viscous.

• Yielding concentrates deformation.



Deformation maps

(Ranalli, 1995)



Strength of the Lithosphere and Mantle (3)

(Kohlstedt et al., 1995) Strength curves for different materials: lithosphere



Slab rheology

Figure courtesy of M. Billen



Governing equations

• Conservation of mass: continuity

• Conservation of momentum: Stokes’ equation

• Equation of state: density

• constitutive equation: rheology

• Conservation of energy: temperature



Continuity

(from Turcotte and Schubert, 2002)

This gives: 0=⋅∇ u




Derivation of Stokes equation

∂ ij

∂ x j

 f i=0∇⋅f =0

Static force balance

Incompressible constitutive relationship and separation into deviatoric stress

 ij=ij− pij=2 ij− pij

Constant viscosity

2
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Derivation of Stokes equation (2)
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Incompressible, Newtonian flow







Simplified equations



Simple 1-D fluid dynamics examples

Couette channel flow:

Channel flow with horizontal pressure gradient (Hagen Poiseuille):



Stokes sinker solution



Inferences based on Stokes flow
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Scaling:

Dimensional equations: 

0=⋅∇ u
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Scaled equations (with primes left out): 

0=⋅∇ u
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Rayleigh numbers

ηκ
αρ 3

0 Thg
Ra

∆=

Bottom heated

Internal heating H h3=k ∇ T h2=kT h

T=
H h2

k

RaH=
0 g H h5

k 



Effect of phase transitions

Clapeyron slope
=dpdT c=

Q latent 12

T a

Buoyancy parameter

P=



2 g h
=

Rb
Ra



e.g. Schubert et al. (1975); Christensen (1985);
Schubert et al. (2001), p. 466f
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Linear stability analysis (1)

•  for small ∆T (or Ra): conduction
•  for larger Ra: convection sets in
 so minimum Ra = Rac exists below which no convection 

occurs

•  T = Tconductive + T1 = T0 + T1

•  For small velocity and T1 we can linearize system: ‘linear 
stability analysis’

• Energy equation in terms of T1 and Ψ
• Remove ‘small’ terms
• Solve with separation of variables:
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• α<0: stable
• α>0: instable
• α=0: marginal stability

( )
2

3222

k

nk
Rac

π=

See Schubert et al. (2001) p. 288ff



Linear stability analysis (2)

minimum Rac = 657.5 for free-slip, 
bottom heated, 

c
 = 2.8

Rac as function of 
horizontal wavelength k=2πb/λ,
b = box height, i.e. 

one wavelength of counter-rotating 
cells with aspect 
ratio 2.8 x 1 for  = 

c
 

(from Turcotte and Schubert, 2002)



Simple convection model for high Ra

(from (Davies, 1999))

• B = gDdρα∆T
• R = 4ηv
• R + B = 0
• v~14 cm/yr
• relates physical quantities



Boundary layer theory

See Schubert et al. (2001) p. 353ff
Grigne et al. (2005)
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Ra=1      Nu=1

Example:  Boussinesq convection, isoviscous, no internal heating

Figure courtesy of P. van Keken



Ra=103      Nu>1

Figure courtesy of P. van Keken



Ra=104     Nu=3.5

Figure courtesy of P. van Keken



Ra=105      Nu=8

Figure courtesy of P. van Keken



Ra=106      <Nu>=16

Figure courtesy of P. van Keken



Ra=2x106      <Nu>=18

Figure courtesy of P. van Keken



Ra=5x106     <Nu>=20

Figure courtesy of P. van Keken



Logistical equation (May, Nature, 1976):
xn+1 = r xn ( 1 – xn )



Ra > Rac modeling results

• higher Ra gives thinner thermal boundary layers
• For larger Ra flow usually not steady state



2D convection experiments,
isoviscous case

Courtesy of Allen McNamara

Ra = 107 H = 0 '(T)= 1 
lm

/
um

 = 1



Courtesy of Allen McNamara

Ra = 107 H = 0 '(T) = 1000 
lm

/
um

 = 1

Temperature dependent 
viscosity



Thermal convection in the mantle

Courtesy of Allen McNamara

Ra = 107 H = 0 '(T) = 1000 
lm

/
um

 = 50



Ra = 2.4e5

Increase of 
internal
heating



Heating mode

from (Davies, 1999)

• bottom/internal heating
• passive/active upwellings (MOR?)
• time dependence
• bottom/top boundary layer independent (plumes vs. plates)



Convection with η(T) (1)

from Bercovici et al., (1996)

• large aspect ratios
• large viscosity variations in top 200 km
• asymmetry between up- & downwellings



Convection with η(T) (2)

from Bercovici et al. (1996)

Stagnant lid regime on Earth?
 missing rheology!
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