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Rheology

Elasticity vs. viscous deformation
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n = 0 (10?") Pa s = viscosity
u= 0O (10") Pa = shear modulus = rigidity
T=n/u=0(10") sec = O(103) years = Maxwell time




Elastic deformation

In general:
O; = Cijkl €x
(in 3-D 81 degrees of freedom, in general 21 independent)

For isotropic body this reduces to Hooke’s law:
O; = )\ekkéij + 2|~15ij

with A and p Lame’s parameters, €, = €, + €,, T €5,

Taking shear components ( [ | ) gives definition of rigidity:
0y, = 2Ey,

Adding the normal components ( /=/ ) for all i=1,2,3 gives:
Ow = (BA + 21) g = 3KEg,
with K = A + 2/3 = bulk modulus



Linear viscous deformation (1)

Total stress field = static + dynamic part:
0, ==po; *1,

Analogous to elasticity ...
General case:

— ' .
Tij =C ijkl gkl

|sotropic case:

T, =A'€,0, +2neE,



Linear viscous deformation (2)

Split in isotropic and deviatoric part (latter causes

deformation): B
U“_U _go-kké p5ij
STy

ij ij 3 kk =1

which gives the following stress:

Vo . X
g i (p p)él] + Cgkk5ij + 2’75 ij
With compressibility term assumed 0 (Stokes condition é‘kk =() )

2 o
(¢ = A'+—1 = bulk viscosity)
3 T

28
Ingeneral 1 = f(7,d, p,H,0)

Now — 2,75 or




Non-linear (or non-Newtonian) deformation
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General stress-strain relation: g = AT"
n =1 : Newtonian
11 >1 :non-Newtonian
n — ©0 : pseudo-brittle
1 ~1-1- 1 ~1/n A(1-
Effective viscosity /], ZEA ' :EA ngtmmin

Application: different viscosities under oceans with different absolute plate motion,
anisotropic viscosities by means of superposition (Schmeling, 1987)



Microphysical theory and observations
Maximum strength of materials (1)

‘Strength’ is maximum stress that material can resist
In principle, viscous fluid has zero strength.
In reality, all materials have finite strength.
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Elastic deformation until atom jumps to next equilibrium position.

So theoretical strength O = 0(/1)



Microphysical theory and observations
Maximum strength of materials (2)

However, from laboratory measurements:

Shear strength = O(107* 14) due to:

*Structural flaws O
*Cracks ¥
*\Vacancies O s
*Dislocations O ®
*Subgrain boundaries 5 O
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Figure 9.4 Point defects in crysials {open circles denote atoms occupying the nodes of the
lattice): V, vacancies; SI, self-interstitials; S, substitutional impurities; I, interstitial

impurities.

(Ranalli, 1995)

Stress concentration makes deformation possible under smaller stresses
(compare to breaking/tearing of sheet of paper)
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Figure 5.16. Point defects in a crystal lattice. (a) An inter- ® E{ ~
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distort around the defect. After Twiss and Moores (1992). by i g

e 5.17. lustration of the motion of a vacancy (v) from one
lattice site 1 an adjacent one by the opposite motion of an atow
(solid circle). Matter and vacancies diffuse in opposite directions,
Alter Twiss and Moores (1992).

Crystal Surface

a) Vaczncy Flux b) Formation of a Vacancy
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¢) Vacancy Destruction

cooooc ooocoo (Schubert, Turcotte & Olson, 2001)
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Crystal Surface

Figure 5.18. Ditfusion creep or Herring-Nabarro creep due to vacancy diffusion in a crystal under uniaxial
s along the indicated

compression. (a) Vacancies diffuse toward the surface of highestnormal (compressive) stre
paths, Atoms diffuse in the opposite direction. (b) Creation of a vacancy af a surface of minimum compressive
stress. The solid lines mark the crystal surlace. The solid cirele marks the ion whose position changes to
ereate the vacancy (v). The surface gradually builds out, lengthening the crystal normal to the compressive
stress. Vacancies difluse toward a swrface of high compressive stress. (€) Destruction of a vacancy at a surface
of maximuin compressive stress. Removal of atoms from the surtace and destruction of vacancies graduaily
shortens the crystal parallel 1o the maximum compressive stress. After Twiss and Moores (1992).



Figure 9.6 (a} Slip by propagation of an edge dislocation EE, equivalent to an extra half-
piane in the lattice; (b} slip by propagation of a screw dislocation SS, with atoms forming
a helix around the dislocation line. (Represeniations of slip and of aiomic arrangement of
edge dislocation from Nicolas & Poirier 1976. Atomic arrangement of screw dislocation

reproduced from Hull 1975))
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Dislocation creep

(Ranalli, 1995)



Steady state creep models

Theoretically many different models: only a few relevant for
Earth

* (Climb-controlled) dislocation creep or powerlaw creep:
gliding of dislocations controlled by the climb rate around
impurities/obstacles: o n

EZ’+pV&

e D, |—

Dg=D,exp

RT

* Diffusion creep (Newtonian, linear creep):
* Nabarro-Herring creep (diffusion through grain)
* Coble creep (diffusion along grain boundary)

DSD 0 m=2-3
d" \H

* Peierl’s stress mechanism (low-T plasticity): dislocation glide
* Grain-boundary sliding (superplasticity)

* Pressure-solution
* Brittle deformation, Byerlee’s ‘law’

€ oC
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Strength of the Lithosphere and Mantle

Experimental data for olivine

Figure 10.10 Experimental stress—strain rate diagram for olivine (data from various
sources). Continuous line (R) gives the fit to the data provided by the theoretical power-

law creep equation (from Ranalli 1982).



Strength of the Lithosphere and Mantle

TABLE 7-5 Parameter Values for Diffusion Creep and Dislocation Creep in a Dry

Upper Mantle (Karato and Wu, 1993)"

Quantity

Diffusion Creep

Dislocation Creep

Preexponential factor A, s~
Stress exponent n

Grain size exponent m
Activation energy E ,, k) mol™

Activation volume V,, m* mol '

8.7 x 10°

2.5
300
6 x 107

3.5 x 107
3.5
0
540
2x10°

* Other relevant parameter values are G =80 GPa, b =0.5 nm, and R =8.3144 JK " mol ',

TABLE 7-4 Rheological Parameter Values of

Geologic Materials

Material CGi(MPa~"S$™") n Eq(k) mof™)
Ice 8.8 x 10° 3 60.7

Halite 95x 107! 5.5 98.3

Dry quartzite 6.7 x 107" 6.5 268

Wet quartzite 4.4 % 10 2 26 230
Limestone 4.0x10° 21 210

Maryland diabase 5.2 10 3 356

(Turcotte and Schubert, 2002)

Collection of rheological data
for different materials



_ E+pV
s = Ac"d " Clyex ad)exp [ —
¢ H,0€XP (—00) ex] ( RT )
a E+pV
=A"t"d™"e —
exp ( BT )
3l
"n__ —6(m+n)
A 21 — ]D }'H 1 ("J”' (}A
type Aeq. (1) A"eq.3) n m E[kI/mol] V [10-°m’/mol]
Hirth & Kohlstedt (2004) SI unaits
units
diffusion creep
dry 1.5%10° 45x10° 1 3 375 6
wet 10° 3.0<10° 1 3 335 4
dislocation creep
dry [.1x10° 74x1071 35 0 530 14
wet 90 24x107% 35 0 480 11

See Hirth & Kohlstedt (2005)
for olivine in the upper mantle



Laboratory experiments: large temperature,
strain-rate & grain-size dependence.

e Viscous flow law (for each mechanism):

T v _C ) [E+ka]
= ;] ex
=\ Aelad) Chy) M P17 aRT

where,
1Ty =T+ 1,

P, is the lithostatic pressure, including a compressibility gradient.

For dislocation (ds) creep p = 0, n = 3.5.
For diffusion (df) creep p = 3, n = 1.



e Dislocation (ds) & diffusion (df) creep accommodate total strain-rate:
€ = €qr + €ds (2)

e For deformation at constant stress, the effective viscosity is:

NdfT)ds
ef — 3
et Nas + Nds 3)

For a background upper mantle viscosity of n, = 10%" Pas (at 250 km):
— Transition strain-rate (éz = égs): € = 10717 57!

for Cog = 300 ppm-H/Si & d = 10 mm.

Dislocation creep decreases viscosity where the
strain-rate is more than the transition value.



e Plastic yield stress, o, limits the stress (and viscosity).
If,

Oy > Naf€rr
then,

Ny = 0y/€rr

e Composite viscosity:

Teomp — Illill(’?’}e_f, T?y)

* Non-deforming regions remain highly
viscous.

* Yielding concentrates deformation.



Deformation maps
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Figure 11.1 (o, z)-deformation map for polycrystalline olivine with grain size 0.1 mm.
Thick lines are creep field boundaries: thin lines, constant strain rate contours (given as
powers of 10). C and NH denote Coble and Nabarro—Herring creep, respectively (from
Ashby and Verrall 1978).

(Ranalli, 1995)



Strength of the Lithosphere and Mantle (3)

Differential Stress (MPa) Differential Stress (MPa)
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Figure 9. Suength envelopes for oceanic and continental lithosphere. (a) For the oceanic lithosphere, a
geotherm for 60-m.y.-old lithosphere was used [e.g., Turcotte and Schubert, 1982 pp. 163-167]. A rheology
for dry olivine [Chopra and Paterson, 1984] was used because water strongly partitions into the melt dunng
partial melting. (b) For the continental lithosphere, a geotherm for a surface heat flow of 60 mW m™! was
employed [Chapman, 1986]. The rheologies for wet quartzite are those used in Figure 5; the olivine
rheology is for wet Anita Bay dunite from Chopra and Paterson [1984]. Wet rheologies were used,
consistent with high fluid pressures in fault zones. Plastic flow strength was corrected for water fugacity
using a water fugacity exponent of unity and assuming lithostatic pore pressure. The BDT and BPT,
determined as described in the text, have been connected by a dotted line.

(Kohlstedt et al., 1995) Strength curves for different materials: lithosphere



Slab rheology

Brittle-plastic

Basaltic crust
yielding

Olivine
diffusion + dislocation creep
(low strain rates)

Delayed
VYN e ¢ » G grain growth?
410 km A : i','l'mlff;

Wadsleyite/ringwoodite
n + dislocation creep ?  ~5x102°-10?' Pa s

Perovskite + MgO
diffusion + dislocation creep ? ~3x10%?' Pa s

4{ Billen MI. 2008.
Annu. Rev. Earth Planet. Sci. 36:325-56.

Figure courtesy of M. Billen



Governing equations

* Conservation of mass: continuity

* Conservation of momentum: Stokes’ equation
* Equation of state: density

* constitutive equation: rheology

* Conservation of energy: temperature



Continuity

v

X o+ 0x l X

¥
ste——— | 5y il
da
7 ™ dx
S ax
l ytoy
du .
+ ‘H
By Sy

(from Turcotte and Schubert, 2002)

Thisgives: [ | [y = (0



Derivation of Stokes equation

Static force balance

S o O0..
. — 7 =
V-o+ f=0 5x f.=0

Incompressible constitutive relationship and separation into deviatoric stress

0,=T,—po,=2ne€,—po,

Constant viscosity




Derivation of Stokes equation (2)

286',.].: O <8vl. | ov, _ azvi | O (91/].)
Ox; Ox; Ox; Ox;” Ox,x;, 0x; 0Ox,
oc.. 62 V. o) Because for incompressible

l]: ! — .
28xj Ox,0x, Vv a"j:o
0X,
2 Op |
nV v, 3 - f.=0 ~ L
i nVv—V p+ =0

62171- ap
L Ox;0x; 0x

Ff=0



Incompressible, Newtonian flow

)
f (§+v-?v) = —Vp+ puViv +f.

P ff}j + uaﬁ + 'Uaj + udj) = _5_}3 + [ (Eﬂzu + Fu + c‘:}zu) + P4
\ Ot dx dy Jz dr dx? = dy? 022 ’
P fﬂ —I-uai—l— 'E'@ + uﬂ) = _3_;} + (8% + o + BEU) + pPg

\ Ot dr  dy 0z My dx?  Oy* 022 Y

ow chw o {}H) . a_p ’ (agur azur agur

— FU— + V—— + W~ — —
. ( ot i dx i dy i dz dz T da? i iy i dz?

)



— Conservation of Mass:

dp
LAVt =0
Y -+ pU

— Conservation of Momentum:

P ((;; + (U V)-ﬁ) =V -0 —gpz

— Conservation of Energy:

dqu +7-VC,T = 'Vt n
ot P




— Conservation of Mass (incompressible; dp = 0):
V=0
— Boussinesq Approximation (dp << p):
p=po(l—a(lT—1T,))

— Constituitive Equation (incompressible):

3?_1.,: X 8'?_Jj 5
/ / di, q (lL,f p J




Simplified equations

— Conservation of Mass (incompressible; dp = 0):

V-u=0

— Conservation of Momentum:
v N - ~
P\ 5, + (v V)| =nV0—Vp—gpz
()

— Conservation of Energy (constant C),, k; H = 0):

or 5 H
p(aﬂj-VT) = rkV T+ c,



Simple 1-D fluid dynamics examples

Couette channel flow:

//////jif// u(y) = Hﬂ

Channel flow with horizontal pressure gradient (Hagen Poiseuille):
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Stokes sinker solution

! 2
ft Apga
X \ VStokes = ¢ o
- 2+2n Ns
1 €= 6+ 9n’ o




Inferences based on Stokes flow
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Scaling:

Dimensional equations:
O =0

- 0bp +n0%u = pa(T - T,)gd;

dT
PG, = kO°T = pCu IOT

p

Scaling parameters
x'=x/h

t'=t/(h*/K)

T'=(T -T,)/AT
n'=n/n,

Scaled equations (with primes left out):

k=0

-0Ap +n0%u = RaTd,, with Rayleigh number Ra =

éz:DT—umT
dt

ap,gATh’

nK



Rayleigh numbers

Bottom heated

ap,eATh
Ra _— IOOg
NK
Internal heating Hh3:kVTh2:kATh
Hh
AT =
k
xp,g Hh
Ra,= -

knk



Effect of phase transitions

Clapeyron slope O, pp,
atent

y(dT)c T,Ap

a_O(pOgATh3 Rb:ApgTh3
Nk n K
Buoyancy parameter
A Rb : h
pP. yap o y y:L yc=p0g
xp’ gh Ra Ye AT

e.g. Schubert et al. (1975); Christensen (1985);
Schubert et al. (2001), p. 466f



Linear stability analysis (1)

* for small AT (or Ra): conduction
« for larger Ra: convection sets in
—> so minimum Ra = Ra, exists below which no convection

OCCUrs

* T= Tconductive + T1 = TO + T1
« For small velocity and T, we can linearize system: ‘linear
stability analysis’

« Energy equation in terms of T, and W

* Remove ‘small’ terms
* Solve with separation of variables:

W = Y cos(nre)sin(kx) exp(ar)
T =T, cos(niz)cos(kx)exp(ar)

* a<0: stable 2 3
* 0>0: instable Ra, = ( k > )
* a=0: marginal stability k

See Schubert et al. (2001) p. 288ff



Linear stability analysis (2)

minimum Ra_ = 657.5 for free-slip,
bottom heated, kc =2.8

Ra_ as function of

horizontal wavelength k=21b/A,
b = box height, i.e.

one wavelength of counter-rotating

cells with aspect
ratio 2.8 x 1 for A = A_

(from Turcotte and Schubert, 2002)
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Simple convection model for high Ra

D/ N (from (Davies, 1999))
(b) T-0
bl
G T

Figure 8.1. (a) Sketch of flow driven by a subducting plate. (b) Idealised
form of the situation in (a).

* B = gDdpaAT

*R=4nv

*R+B=0

* v~14 cm/yr

* relates physical quantities



Boundary layer theory

Y
ES

T;‘;j i(;;ﬂ Z) — erfe [i (i) E-"“] z_oafmﬂ%m{w«m
; (N

h 2=d'mmmv%

T=T, + AT

—_ rd

m A T Ra 3 Figure 3. Loop model for a convective cell of width L and
height d [from Turcotte and Oxburgh, 1967](with permis-

sion from Cambridge University Press).

See Schubert et al. (2001) p. 353ff
Grigne et al. (2005)



Example: Boussinesq convection, isoviscous, no internal heating

Ra=1 Nu=1

Figure courtesy of P. van Keken



Ra=10® Nu>1

Figure courtesy of P. van Keken



Ra=104 Nu=3.5

Figure courtesy of P. van Keken



Ra=105 Nu=8

Figure courtesy of P. van Keken



Ra=10° <Nu>=16

Figure courtesy of P. van Keken



Ra=2x10¢ <Nu>=18

Figure courtesy of P. van Keken



Ra=5x10¢ <Nu>=20

Figure courtesy of P. van Keken



Nu

Period doubling

Bifurcations
Time-dependent

non-periodic flow

Steady state

Conduction convection

Rac Ra —»

4 Logistical equation (May, Nature, 1976):

Xn+1:an(1—Xn) .--'"".'---
2 L e H\‘*--q
3 T B
3 7

e

P

0 4L :

—
L =

fecundity (r) 3



Ra > Ra_, modeling results

Temperature

Figure 9.2. Contours of temperature for steady, two-dimensional, Rayleigh-Bénard convection in aspect rati
ong cells heated from below (Jarvis, 1984), showing the development of thermal boundary layers with increasin
Rayleigh number, Numbers indicate the ratio Ra,/Ra., with Ra,, = 779.27.

00
= |
[iE‘I’Ja]
&4

i L 1 i
R/l —>
Fig. 3. Plots of Nu, and 8'( = 8/d), as functions of Ry /R.. All
values are plotted on logarithmic scales. §; represents the
shallowest depth at which the mean temperature AT /2 occurs
in the mean temperature profile, while §; represents the mean
depth of the maximum temperature in the upper thermal
boundary layer. The straight lines have been fit through the
model predictions for all models with 100 < Ry /R < 30000.
The data included in these graphs are tabulated in Table I in
the Appendix. ..

* higher Ra gives thinner thermal boundary layers
* For larger Ra flow usually not steady state



2D convection experiments,
ISOVISCOUS case

) T — S—— I

L il — A L a

L]
. .

Ra =10’ H

0 n'(T)=1 MMy =1

Im ‘um

Courtesy of Allen McNamara



Temperature dependent
viscosity

i = Y,
|

Ra = 10’ H=0 N(T)=1000 n /=1

Courtesy of Allen McNamara




Thermal convection in the mantle

Ra =10’ H

0 n(T)=1000  n /m =50

Courtesy of Allen McNamara



Ra = 2.4e5

Increase of
internal
heating
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Heating mode

Temperatyre 218 3 Ma 349.6 Ma

587.0 Ma
(b) COLD Temperabyre S i

\ ( !n!ema!he.wl‘r'ug\ (
o A _

INSULATING

738.7 Ma

(c) COLD Temperatyure

Y 0.0 Temperature 2840 0.0 Temperature 2840.

HOT
Figure 8.3. Sketches illustrating how the existence and strength of a lower Figum 8.4, Frames from numerical mode]s, i]lustrating the differences
th““ﬂ] boundary layer depend on the way in which the fluid layer is between convection in a layer heated from below (left-hand panels) and in a
ated, . . . 3 F,
e layer heated internally (right-hand panels). (Technical specifications of these

models are given in Appendix 2.)

from (Davies, 1999)

* bottom/internal heating

* passive/active upwellings (MOR?)

* time dependence

* bottom/top boundary layer independent (plumes vs. plates)



Convection with n(T) (1)

* large aspect ratios
* large viscosity variations in top 200 km

* asymmetry between up- & downwellings

0.0

0.0 0.5 1.0
horizontally averaged temperature

Figure i Temperamre profiles (i.e., horj zontally averaged temperature
versus depth) for a basally heated, plane layer of fiuid undergoing ther-
mal convection when i1s viscosity is constant (solid curve) and temperature-
dependent (dashed). The profiles show that most of (he wmperature change
across the fluid occurs in relatively narrow thermal botndary layers near
the 1op and bottom surfaces. In between the two boundary layers, most
of the fluid is stably siratified or (if very well mixed) homogeneous. The
fluid with temperature-dependent viscosity develops a stiffer upper thermal
boundary layer which acts as a heat plug (ie., it reduces convection’s ahility

o eliminate heat), causing most of the rest of the fluid to heat up (o a larger from Bercovici et al - (1 996)

average wemperatre. (After Tackley [1996a].)



Convection with n(T) (2)

16 |- L T B

14 i

} Stagnant lid regime on Earth?
“r e - missing rheology!

no convection

Earth-like regime

| 0g, (j.lmam"‘i.l.mr'n)
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i

6 =2

______ 5

ol /

4 - L :

WA sluggish lid
s | e _ I

nearly iso'\.'rt'slous

0 : . i ! : L "
2 3 4 5 6 7T 8 9 10 {1

Figure 6. Diagram showing the different convective regimes in “Ra

versus viscosity ratio” space for convection in fluid with temperature-

dependent viscosity: fimags aNd fgpgn are the maximum and minimam

allowable viscosities of the fluid, respectively. Dashed and dotted boxes

show the regime of various numerical convection experiments, The box

with the selid boundary shows the likely regime for the Earth, See text for from Bercovici et al. (1 996)
discussion. (After Solomatov [ 1995].)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Material Properties: Rheology
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Thermo-Mechanical
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

