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Chapter 1

Preliminaries

1.1 Acknowledgments

Parts of these course notes follow the treatment in the naat@nalysis lecture notes I8piegel-
man(2004), the textbook byPress et al(1993 on numerical analysis, and the textbookHyghes
(2000 on finite element methods.

The finite difference exercises and the scaling homeworigasgent are loosely based on an
ETH Zurich course taught by Yuri Podladchikov. Most of the finiteneent exercises are built
directly on theMILAMIN Matlab software which is openly distributed Byabrowski et al(2008.
The multigrid problem set is based on an exercis@hbyng(2008, and one of the elasticity finite
element exercises is inspired by a Numerical Analysis ¢tagght by Harro Schmeling at Frankfurt
University in 1997. Students who took the class at USC Eacibrfges in the Fall of 2005 and
2008 provided valuable feedback.

Partial funding for course development was provided by tBeNational Science Foundation
under CAREER grant EAR-0643365.

1.2 Availability and contact

This PDF, its Latex source files and figures, as well as additimaterial for this class are avail-
able at the USC GEOL540 course web site

http://geodynamics.usc.edu/ becker/teaching-540.htm l.

In particular, the Matlab problem sets mentioned below sada@ble at

http://geodynamics.usc.edu/ becker/teaching/540/mat lab_problem_sets_usc_geol540.tgz
Please send an email to Thorsten Becker (thorstinski -atH gara) for any comments and ques-
tions.


http://geodynamics.usc.edu/~becker/teaching-540.html
http://geodynamics.usc.edu/~becker/teaching/540/matlab_problem_sets_usc_geol540.tgz
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1.3 Abbreviations used

BC Boundary conditions

FD Finite differences

FE Finite elements

IC Initial condition

ODE Ordinary differential equation

PDE Partial differential equation

USC GEOL540
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CHAPTER 1. PRELIMINARIES

1.4 Course objectives

Assuming the use of open, community software will continognicrease over the next years,
geodynamics as a field faces the challenge to educate ssudenimerical analysis basics without
having each PhD student write their own code. This clasgipased to help address this challenge
and is geared towards all Earth science or engineeringstisidét the time of developing the class
and lecture notes, no adequate textbook existed (buGsegs 2009 Ismail-Zadeh and Tackley
2010. This is why we developed our own set of documents for opeln siesemination in the
hope that they are useful.

The lecture notes and problems sets that are compiled imlttisment form the basis of a
one-semester, graduate level class at the University afh®ou California that is geared towards
students from both geology and geophysics. The goal istodote some of the fundamental con-
cepts of numerical analysis within the context of solid Bamantle dynamics type of problems.
The class includes regular lectures but is centered aroandshon, programming exercises using
Matlab (see sed.4.1). 2 As presented here, the class covers the solution of orditifigyential
equations briefly, and then spends about equal time on fiifiezehce and finite element methods
for the solution of partial differential equations as theg@in continuum mechanics.

Students should ideally have had significant exposure twlted, some linear algebra, a classic,
introductory geodynamics (or continuum/rock mechanicsirse €.g, based on thé@urcotte and
Schubert2002 text), and have some introductory level knowledge of capprogramming and
Matlab. Earth science students have diverse backgroumtisfeen do not fulfill all of these math
and programming prerequisites. We like to err on the sidesaifriing by doing and supporting
a broad group of students, and therefore also provide basiegs on calculus, linear algebra,
continuum mechanics, and computer programming. The firekvg&spent learning some basic
Matlab skills. The students are then guided through inangés more involved programming
using the problem sets as examples.

The class is an attempt at a self-contained introductoryesuof numerical modeling. This
necessitates skimming over many technical or theoretssaleis (for example, no mathematical
proofs are given), and we also cannot give much room to theudlsson of alternative, or cut-
ting edge numerical methods. As such, PhD students at USCangeophysical background are
encouraged to take more theoretically advanced classelglitiaa to this introductory course.

Our goal is to provide all students with a sufficient workingolledge to solve simple re-
search problems by reusing the Matlab codes introducedinlgam sets, or by writing their own
software. If complex 3D problems are to be solved, studenitsoften go on to use existing,
shared software, such as the codes distributed by the Cotgmatidnfrastructure for Geodynam-
ics (http://geodynamics.org ). The basic insights into numerical analysis that are cgewe
in this class should help make students educated and emgadwsers and developers of such

1The accompanying Matlab problem sets can be found at
http://geodynamics.usc.edu/"becker/teaching-540.htm I,
and a solved set of problem sets for instructors can be autdiy contacting TWB ahorstinski-at-gmail.com

2We chose Matlab because of its ease in developing and detwuggitware and built-in visualization capabilities.
The fact that the language is interpreted, and not compileds somewhat limit the scope of the applications of the
solution methods discussed in class, pretty much to 2D prog)| yet at high efficiencies.g.Dabrowski et al.20089.

USC GEOL540 7 Numerical Geodynamics
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software.
Thorsten Becker and Boris Kaus, June 2010

1.4.1 Example syllabus

As an example for how the lecture notes and problem sets caorhbined into a one semester
course, we provide the syllabus as the class was taught Fathef 2008. Each week, the class met
for a three hour slot which typically consisted of some farmstruction by means of lectures and
joint Matlab problem-set exercises in a computer lab. Someks, all class time is spent working
on problem sets. The class culminates in a three week finggirpart where students are to
either write their own code or combine codes used in clagseffample, combine advection and
diffusion solvers, and further with a Stokes solver to a&iat a self-contained convection code).

1. Introduction (chap.3)

1.1 Overview of numerical methods in Earth Sciences (3€%.

1.2 Examples of applications for numerical methods in ESdiences (se@&.2)
1.3 Computer hardware, Computer Language, Principles ofr®@maging (sec3.3)
1.4 Exercise: Matlab programming (s&c4)

Notes: Introduction Handout, Math Problem set, Matlab
2. Ordinary differential equations (sec.4)

2.1 Definition of ODEs (sect.1)
2.2 Initial value problems (sed.2)

2.3 Euler method, Taylor expansions, Accuracy of numernueathods, Midpoint method,
4th order Runge Kutta. seé.3)

2.4 Exercise: Program and solve Lorentz equations (endcofis®.
Notes: ODEs Problem set, ODEs

3. Scaling analysis(sec.2.3); Non-dimensionalization; Non-dimensional numbers (R,
Prandtl, Peclet, Reynolds, Deborah). Stokes velocitietNEwtonian and non-Newtonian
rheology; shear layers.

Notes/problem set: Scaling

4. Finite differences | (sec.5.1): 1-D heat equation. Explicit solution of diffusion probis.
Stability.
Notes/problem set: Explicit FD

USC GEOL540 8 Numerical Geodynamics
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10.

11.

12.

13.

. Finite differences Il (sec.5.2): Implicit methods. Crank-Nicolson method. Order of spatia

and temporal accuracy. Stability conditions. Neumann amitiidet boundary conditions.
Sparse matrices, triangularity. Linear systems of eqoatibleat equation in 1-D.

Notes/problem set: Implicit FD methods

. Finite differences Ill (sec.5.3): Non-linear equations. Darcy flow equation for pressure-

dependent diffusivity. Two-dimensional heat equatiorytson with fully explicit and fully
implicit methods (sec5.4). Comparison with analytical solutions.

Notes/problem set: Non-linear and 2-D FD methods

. Finite differences IV (sec.5.5): Advection equation for heat transport. FTCS method and

stability. Lax method, Courant criterion. Upwind schemedag8ered leapfrog. Semi-
Lagrangian methods. Advection-diffusion combos in 2-Demaor splitting.

Notes/problem set: Advection equations and combos

. Finite elements I (sec.6.1): Introduction to the finite element method. Strong and weak

forms of PDEs. Discretization of domains into finite elensenShape functions. Bilin-
ear forms. Variational approaches, virtual work. Galenkiethod. One-dimensional heat
equation example.

Notes: FE Intro

. Finite elements Il (sec.6.2): Local and global coordinate systems. Change of variables

during integration. Matrix assembly. Solution of lineassgms of equations, direct and
iterative methods. LU decomposition, Cholesky. Jacobi,Ss&teidel, Conjugate gradient,
and multigrid methods.

Notes: FE Implementation Problem set: 1-D FE implementadiod matrix inversion
Finite elements Il (sec.6.4): 2D boundary value problems. Isoparametric element®-Jac
bian; global and element-local coordinates. Numericagrdtion using Gauss quadrature.

Triangular and quadrilateral shape functions. Meshinggigiangles. Solution of 2-D heat
equation.

Notes: FE 2D, time dependent solution Problem set: 2-D FEdupaation
Finite elements 1V (sec.6.6): Compressible elastic problems. Elastic moduli, planesstr

plane strain. Gradient operator, elasticity matrix, eeging strain convection. Visualiza-
tion of stress states, eigensystems.

Problem set: 2-D FE elastic

Finite elements V(sec.6.8& 6.7): Compressible and incompressible elasticity and Stokes
flow. Mixed formulation with discontinuous pressure. Pdwéstenen iterations.

Notes: Incompressible elastic/fluid problem Problem sd: RE incompressible Stokes

Joint project work in computer lab.

USC GEOL540 9 Numerical Geodynamics
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1.4.2 \ersion history
1.1.1 (October 15, 2010} minor stylistic changes

1.1 (August 2010)- Introduction: minor corrections and aesthetic modificat ions
to example syllabus.
- (Week 0) Basic Math: added a useful formula to find eigenval ues.
- (Week 1) Exploring Matlab:
- added GUI help and function browser
- minor aesthetic and grammar changes
- (Week 2) Solving ODE's:

- function for calculating derivatives used in R-K solver
were put in a separate m-file <dydt.m>

- code in <lorenz.m> and <rkstep.m> was changed accordingly

- (Week 3) Scaling:
- suggestion for students to use a table and example headings
- (Week 4) FD Explicit 1-D Heat:

- added detail about CFL (Courant) condition and concept of s tability,
numerical dissipation and aliasing with reference to prope r textbook
and chapter.

- (Week 5) FD Implicit 1-D Heat:

- added requirement that students compare results to previo us schemes

- added requirement that students compare accuracy of diffe rent schemes
near instability region.

- (Week 6) FD Non-Linear and 2-D Heat
- added req that students compare linear and non-linear soln s at each
timestep to visualize the difference.
- (Week 7) FD Advection

- Changed alpha (Courant number) in most <filename.m> to ref lect defn in
notes (it was incorrect before).

- Added blurb about the reason why implicit methods are not a ¢ ood choice
for solving hyperbolic equations.

- Added extra exercise and explanation: implement C-N and mo dified FE
C-N scheme

- Added solution file <exercise_1 ¢ n.m>

- Added extra exercise and explanation: implement modified Galerkin

Lax-Wendroff scheme
- Added solution file <exercise_1_gLW.m>
- (Week 9) 1-D FE Example
- Added another solver and an explanation:
Successive Over Relaxation <sor.m>
- Added code to implement option to use SOR or MATLAB CG in matl ab_code dir
- Removed code from <heatldfe.m> and added comments to ensur e that
students write their own stiffness matrix assembly code
- (Week 10) 2-D FE Exercise
- In <thermal2d_test2.m>:

USC GEOL540 10 Numerical Geodynamics
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Removed call to thermal2d_std solver so that students have t 0 at least
open the file and read through some of the code and learn how to use it.
- (Week 11) 2-D FE Elastic Exercise
- In <elastic2d_test2.m>:
Added comments and hints for the extra boundary condition ca ses required
for the second part of the exercises.
- Cleaned up the figure for the load cases.
- (Week 12) FE 2-D Stokes Flow Exercise
- In <mechanical2d_std.m>:
Removed parts of the code to create the blanks referred to in t ext:
the parameters and the call to the solver.

1.0.3 (June 2010)Stylistic improvements including hyperlinks in PDF.

1.0 (June 2010)Initial completion of PDF lecture notes.

USC GEOL540 11 Numerical Geodynamics



Chapter 2

Review material

2.1 Introductory notes on basic algebra and calculus

This chapter provides a few brief notes on math notation amdepts needed for this course (and
USC classes GEOL440, GEOL534, or GEOL540). Not all concaptsformulae are presented
in a mathematically rigorous way and you should refer to ahnfiat engineers text for a more
complete treatment. For the remainder of the course, itheilhssumed that you are familiar with
the matter treated in this section, please come and ask mgtHiag is unclear.

2.1.1 Linear algebra
The dot product

We will make use of thelot product which is defined as
n
c=a-b=Y abj, (2.1)
2

wherea andb are vectors of dimension (n-dimensional, geometrical objects with a direction
and length, like a velocity) and the outcome of this operat#oa scalar (a regular numbec),In
eg. .1, YL, means “sum all that follows while increasing the indésom the lower limit,i = 1,

in steps of of unity, to the upper limit,= n". In the examples below, we will assume a typical,
spatial coordinate system with= 3 so that

a-b =ajb; +aby + agbs, (2.2)

where 1, 2, 3 refer to the vector components algng andz axis, respectively. When we write
out the vector components, we put them on top of each other

a1 ay
a=| a | =| a (2.3)
as 3z
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or in a list, maybe with curly brackets, like sa:= {a1,a2,a3}. On the board, | usually write
vectors as rather thara, (which is used in these sets of lecture notes) becauss teier. You
may also see vectors printed as bold face letters, lika.s@n the Einstein summation convention,
we would rewriteS ! ; a;jbj simply asajbj, where summation over repeated indices is implied,
the y is not written.)

We can write the amplitude (or: lengtly norm) of a vector as

n
o=,/ &= /aj+as+ag=/ai+a]+al. (2.4)
|

For instance, all of the base vectors defining the Cartesiardowte systengy, e,, ande; have
unity length by definition|g| = 1. Thoseg vectors point along the respective axes of the Cartesian
coordinate system so that we can assemble a vector fromnitpaueents like

a= {ax,ay, 8} = axex + a6y + aze;. (2.5)

For a spherical system, tieg, ey, andeg unity vectors can still be used to express vectors but the
actual Cartesian componentsepfiepend on the coordinates at which the vectors are evaluated
We can restate eq2 (1) and give another definition of the dot product,

a-b = |al|b|cosB (2.6)

wheref is the angle between vectasndb. The meaning of this is that if you want to know what
component of vectoa is parallel tob, you just take the dot product. Say, you have a veloeity
and want the normal velocity, along a vecton with |n| = 1 that is oriented rectangular to some
plate boundary, you can usg=Vv-n.

Also, eq. .5 only works because the base vectgref any coordinate system are, by defini-
tion, orthogonal (at right angle, perpendicularfat 90°) to each other and -e; = 0 for alli # j.
Likewise, & - g = 1 for all i sincea-a= |a|?, and base vectors have unity length by definition.
Using the Kronecked

oj=1 for i=j, and Q=0 for i#j, (2.7)
we can write the conditions for the basis vectors as

& -€j = 0jj. (2.8)

Vector or cross product
This operation is written a@x b oraA b and its result is another vector
c=aAb (2.9

that is at a right angle to bothandb (hence the right-hand-rule, with thumb, index, and middle
finger alonga, b, andc, respectively). vector's length is given by

Ic| = |aAb| =|a||b|sins, (2.10)

USC GEOL540 13 Numerical Geodynamics



CHAPTER 2. REVIEW MATERIAL

that is, c is largest whera andb are orthogonal, and zero if they are parallel. Compare this
relationship to eq.4.6). In 3-D,

ayb, — azby
axby - aybx

(note that there is nocomponent ofa or b in thei component ot, this is the aforementioned
orthogonality property). The cross product can also betevrias the determinant of the matrix

& & &
ax ay a (2.12)
bx by b

An example for a cross product is the veloocityat a point with locatiorr in a body spinning
with the rotation vectow, v = wAr. The rotation vectow is different from,e.g, r in thatw has a
spin (a sense of rotation) to it (the other right-hand-raleere your thumb points along the vector
and your fingers indicate the counter-clockwise motion).

Matrices and tensors

A nx mmatrix is a rectangular table of elements (or entries) witows andm columns which
are filled with numbers. You will see matrices printed likeAsand we usually indicate them on
the board by double underlining likk The elements are referred toA&g wherei is the row and

j the column. Matrices can be added and or multiplied.

Multiplication of matrix with a scalar

Axx Axy Oxz fay faxy fax
Azx dzy azz fas, fay fa

Multiplication of a matrix with a vector

Cx Axx Axy Axz bx axxbx + axyby 4 ax;
Cy - ayx ayy ayz . by - ayxbx + ayyby + ayzbz (2 14)
Cz Azx dzy dzz b, azx + azyy + azh;
or
ci:zaijbj. (2.15)
J

USC GEOL540 14 Numerical Geodynamics
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Multiplication of two matrices  works like this:
C = AB (2.16)
Gj = Zaikbkjy (2.17)

wherek goes from 1 to the number of columnsAnwhich has to be equal to the number of rows
in B. Note that, in generahB # BA!

Some special matrices and matrix properties

Quadratic matrices Haven x n rows and columns. All simple physical tensors, such asstres
or strain, can be written as quadratic matrices n3

Identity matrix 1 =1, ij; = &jj, i.e. this matrix is unity along the diagonal, and zero for all athe
elements.

Transpose of a matrix (AT)ij = aﬁ = aji, i.e. the transpose has all elements flipped by row and
column.

Inverse ofA,A=1 : A~lA=AA"1=I. Iftheinverse exists, thefh 1)1 = A, (AT)"1 = (A-1)T,
and(AB)~1=B"1A1,

Orthogonal or rotation matrices: AAT =ATA=1

Eigenvalues and vectors: Any n x n symmetric matrixA hasn eigenvectory; that correspond
to real eigenvalues; such that
Avj = AjV; (2.18)

An example is the stress matrix which can be written in thegypial axes system, where the
eigenvectors of the Cartesian representation of the strags«are the principal axes. Eigenvalues
can be found using

dettA—Al)=0 (2.19)

and eigenvectors subsequently by using the first property.

Decomposition Any quadratic tensoA can be decomposed into a symmetric g&r{for which
aj = &j) and an anti-symmetric paA® (for which afj = —a%) like A = A* + A? (Cartesian de-
compositiol. In the case of the deformation matfix we call the symmetric padtrain E (the
infinitesimal strain tensog), and the anti-symmetric part corresponds to a rotaRofhe polar
decompositiotis also of interest; we can wrife= RU = VR whereR is a rotation matrix ant) and

V are the right- and left-stretch matrices, respectively én= (FFT)l/ ? The left-stretch matrix

describes the deformation in the rotated coordinate syafeamnthe rotatiorR has been applied to
the body.

USC GEOL540 15 Numerical Geodynamics
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Tensors

The stres® and straire are examples of second order (rank 2) tensors which, fon= 3, 3-D
operations, have'omponents and can be writtenrag n matrices. You will see tensors printed
like so E, and we usually indicate them on the board by double undegihke €, making no
distinction between tensors and matrices. -

Tensors in a Cartesian space are defined by their properties ooordinate transformation. If
a quantityv remains intact under rotation to a new coordinate systesuch that

3
Vi = Lijvj = Z Lijvj (2.20)
=

holds, therv, a vector, is a first order tensdr,; may be, for example, a rotation matrix. Likewise,
a second order tensaris defined by remaining intact after rotation into anotherdaate system
where it is expressed ds such that

T,? =LikTuLj = ZLik ZTK'L” =LTLT (2.21)

2.1.2 Calculus
Full and partial derivatives

In calculus, we are interested in tiseangeor dependencef some quantitye.g. y on small
changes in some variable If u has valueug at Xp and changes tag 4+ du whenx changes to
Xo + 0X, the incremental change can be written as

ou
ou= &(xo){)x. (2.22)

The d (or sometimes written as capit&) here means that this is a small, but finite quantity. If we
let Ox get asymptotically smaller arourxg, we of course arrive at theartial derivative which we
denote witho like
im ! xp) = 2
ax—0 OX ox’
The limit in eq. .23 will work as long asu doesn’t do any funny stuff as a function xflike
jump around abruptly. When you think afx) as a function (some line on a plot) that depends
on x, du/ox is the slope of this line that can be obtained by measuringhia@mgedu over some
interval dx, and then making the interval progressively smaller.
We call ‘3—2 (we also write in shorthandku(x) or U (x); if the variable is timet, we also use
u(t) for ou/at) the partial derivative, becausemight also depend on other variablegy. yandz.
If this is the case, théotal derivative duat some{xo,Yo,Zo} (we will drop (.e. not write down)
the explicit dependence on the variables from now on) isrglwe the sum of the changes in all
variables on whiclu depends:

(2.23)

ou ou ou
du= a—xdx+@dy+a—zdz. (2.24)
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Here, & and similar are placeholders for infinitesimal changes envriables. This means that
eg. .24 works as long as xis small enough that a linear relationship betwéarand dx still
holds. In fact, we can (Taylor) approximaiay ux) aroundxg by

2 .2 A3 3
U(X):U(XO)—FS_;:(XO)(X_XO)+%(XO)%+%(XO) (x 3)!(0) L. (.25

Here,% is the second derivative, the change of the changewith x. n! denotes the factorial,
ie.

nN=1x2x3x...N. (2.26)

So, as long asxd= x— Xg is small, the derivative will work (for well behavag. For example, if
better approximations are neededywhen the strain tensor is not infinitesimal anymore, quacrat
and higher terms like the one that goes with the second dievia the series eq2(25 and so on
need to be taken into account.

How to compute derivatives Here are some of the most common derivatives of a few funstion

function f(x) derivativef’(x) comment

xP pxP—1 special casef (x) =c=0f — f/(x) =0
wherec, p are constants

expx) =€ €& that's what makes so special

In(x) 1/x

sin(x) cogx)

cogx) —sin(x)

tan(x) se(x) = 1/ cog(x)

If you need to take derivatives of combinations of two or mfanections, here called, g, and
h, there are four important rules (withandb being constants):

Chain rule (inner and outer derivative):

If f(x) = h(g(x)) (2.27)
f'(x) = H(g(x)d'(x), (2.28)

i.e. derivative of nested functions are given by the outer tirhesriner derivative.

Sum rule:
(af(x)+bg(x)) = af'(x)+bd (x) (2.29)

Product rule:
(FOg(x)" = ' ()a(x) + f (x)g'(x) (2.30)
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Quotient rule:

If fx) = % (2.31)
) = g’(X>h<xr>](;)g(X>h’(X) (2.32)

If you need higher order derivatives, those are obtainedibgessively computing derivatives,
e.g.the third derivative off (x) is

% -2 (% (%f(x))) . (2.33)

P33 9 /0 [0 0 /0., 0
W‘&(&(&Xg»_a_x(a_xgx)_a_xm_a (2.34)

Divergence and curl

Say, f(x) = x3, then

Operatorsare mathematical constructs that do something with theyetiat is written to their
right. For example, we had earlier introduced tradient operatoy O (the del operator is rep-
resented by the “Nabla” symbal), which takes derivatives in all directions and, in a Cadesi
system, is given byl = {%,%, a%}. Here, we explicitly write the vector symbol arountbut
sometimes we just writel because we know that it's actually a vector operator. Whehepfo
scalar field (a distribution of values that depends on splaitation), such as a temperature dis-
tribution T (x,y,z) (meaningT is variable with coordinates, y, andz, assumed implicitly for all

properties from now on), thgradientoperation
gad T=07=| (2.35)

generates a vector from the scalar field which points in thecton of the steepest increaselin
Consider what] can do to a vector field. M = {u,v,w} is a velocity field, then thdivergence
(grad dot product) operation on a vector field

divv=0-v (2.36)

is equivalent to finding the dilatancy (volumetric) strainfrom the strain tensor components

because
A\ ou ov aw_

A V:Izsii :Sxx+€yy+szz:a—x a—y—FE—DV (237)
(HereV is volume, and\V volume change and, mind yog); = 0.5(0;u; +0;u;)). Eq. 2.37) il-
lustrates that the divergence has to do with sinks and ssuocerolumetric effects. The volume
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integral over the divergence of a velocity field is equal te slurface integral of the flow normal
to the surface. (An electro-magnetics example: For the etagfield: div B = 0 because there
are no magnetic monopoles, but for the electric fieltk E = g, with electric chargeg being the
“source”.)
If we take the vector instead of the dot product with the graerator, we have theurl or rot
operation
curlv=[0OAwv. (2.38)

The curl is a rotation vector just like. Indeed, if the velocity field is that of a the rigid body
rotation,v = wAr, one can show thai Av=0A (wWAT) = 2w.
Second derivatives enter into thaplaceoperator which appears,g.in the diffusion equation:

9°T 02T 9°T

21 _
0T = Fva + 32 + 372 (2.39)
Some rules for second derivatives:
curl(gradT)=0x (OT) = O (2.40)
div(curlv)=0-Oxv=0 (2.41)
Integrals
Taking an integral
F(x) = / F(x)dx (2.42)
in a general (indefinite) sense, is the inverse of taking gérevative of a functionf,
af(x)\
F ( o ) e (2.43)
d of(x)y 0 .
a_xF( ™ ) = a—x(f(x)+c)_f (X). (2.44)

Any general integration of a derivative is thus only deterad up to an integration constant, here
¢, because the derivative, which is the reverse of the inkegfra constant is zero.
Graphically, the definite (with bounds) integral ovigi)

/b f(x)dx= F (b) —F (a) (2.45)

alongx, adding up the value of (x) over little chunks ofdx, from the leftx = a to the right
x = b corresponds to the area under the cuire). This area can be computed by subtracting the
analytical form of the integral di from that ata, F(b) — F(a). If f(X) = c (c a constant), then

F(x) = cx+d (2.46)
F(b) = cb+d (2.47)
F(a = ca+d (2.48)
F(b)—F(a) = c(b—a), (2.49)
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the area of the both —a) x c.
Here are the integrals (anti derivatives) of a few commorctions, all only determined up to
an integration constai

function f(x) integralF(x) comment

xP ’F‘)p—: +C special casef (x) =c=cxX’ — F(x) = cx+C
e e +C

1/x In(|x])+C

sin(x) —cogx)+C

cogx) sin(x)+C

There are also a few very helpful definite integrals withdased-form anti derivative®.g.
/ e Cax— V" (2.50)
0 2

A standard math textbook, table of integrals, the Matheraagbdftware, or Wikipedia will be
of help with more complicated integrals.
A few conventions and rules for integration:

Notation: Everything after thef sign is usually meant to be integrated over up todkeor the
next major mathematical operator if th&is placed next to th¢ if the context allows:

/(af(x)+bg(x)+...)dx:/af(x)+bg(x)...dx (2.51)
/dx f(x):/f(x)dx (2.52)
Linearity:
b b b
/al(cf(x)ntdg(x))dx:c/a f(x)o|x+o|/a g(x) (2.53)
Reversal:
b a
/ f(x)dx:—/b f (x)dx (2.54)
Zero length: .
/ f(x)dx= 0 (2.55)
Additivity: )
/Cf(x)dx:/ f(x)dx+/bcf(x)dx (2.56)
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Product rules:

/f’(x)f(x)dx _ %(f(x))erC (2.57)
[ 1gxdx = £(x)g() - [ 1(g/(xdx (2.58)

Quotient rule: /
/];g(())dx:ln|f(x)|+c (2.59)
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2.2 Continuum mechanics primer

The preparatory class for GEOL540 is GEOL534 Lithosphegfobmation where continuum me-
chanics is discussed in the context of geodynamics withsfocLthe lithosphere; a good reference
for such problems iSurcotte and Schube(2002. However, here is a short and extremely sim-
plified review of basic continuum mechanics as it pertainth#&oremainder of the class. You may
wish to refer to our math review if notation or concepts appgdiamiliar, and consult chap. 1 of
Spiegelmarf2009) for some clean derivations.

2.2.1 Definitions and nomenclature

e Coordinate systemx = {X,y,z} or {x1,X2,X3} define points in 3D space. We will use the
regular, Cartesian coordinate system throughout the abassmplicity.

Note: Earth science problems are often easier to address wherentlsymmetries are taken
into account and the governing equations are cast in spagdadpatial coordinate systems.
Examples for such systems are polar or cylindrical systen%&D, and spherical in 3-D.
All of those coordinate systems involve a simpler desaiptf the actual coordinates.(.
{r,8,@} for spherical radius, co-latitude, and longitude, instethe Cartesiaf{x,y,z})
that do, however, lead to more complicated derivativesyou cannot simply replacg/dy
with /00, for example). We will talk more about changes in coordirsgtgtems during the
discussion of finite elements, but good references for deves and different coordinate
systems ardalvern(1977), Schubert et al(2001), or Dahlen and Trom§1998.

e Field (variable). For exampl&(x,y,z) or T (x) — temperature field — temperature varying in
space.

¢ Indexed variables. For example, the velocity fie{d) = v; withi = 1,2, 3 implies{vi,vz,Vv3},
i.e.three variables that are functions of space {xi,X2,X3}.

e Repeated indices indicate summation over these comporasatsdalled Einstein summa-
tion convention).

o ... o S 9vi Av; Ove  dvs
— th i=12 mpl —_—=—4—4— 2.
ox wi [ ,2,3 implies 2.~ ox + 3% + % (2.60)

¢ In aEulerian frameone uses a reference system for computations that is fixquhoes for
example a computational box in which we solve for advecticemperaturdl in a velocity
field v. Local changes irg.g, temperature are then given by
DT 0T oT oT
—=—+VUT = —+Vi—
Dt ot | o Viax
whereD/dt is thetotal derivativethat we would experience if we were to ride on a fluid
particle in the convection celLégrangianreference frame)D /Dt takes into account local

(2.61)
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changes in a property with time.Q.due to radioactive heating fdr) as well as advection
of temperature anomalies by meanwyah and out of our local observation point.

e Tensor= indexed variable + the rule of transformation to anotherdate system.

e Useful tensor — th&roneckerd (delta), in 3D:

dij = (2.62)

O O
(ol e
= O O

e Traction= a force per unit area acting on a plane (a vector).

e Mean stress+ —pressurep), strain: —p = ¢ = ;i /3 =tr(0) /3, = &; /3 = 0 (also called
dilatation).

e Traction/stress sign convention. Compression is negatipdysics, but usually taken posi-
tive in geology. Pressure is always positive compressive.

e Deviatoric stress, straim:= 6 = gjj — 0§jj, € = & — 5jj.

2.2.2 Stress tensor

e A matrix, two indexed variables, tensor of rank two:

- 011 O12
Oij = (021 022>(2D) (2.63)

011 O12 O13
Oij = | 021 02 02 |(3D). (2.64)
031 032 033

e Meaning of the elements: Each row are components of thedragectors acting on the
coordinate plane normal to the respective coordinate theésjiagonal elements are normal
stresses, and off-diagonal elements are shear stresses.

oij. force/area (traction) on thieplane (plane with normal aligned with tixth coordinate
axis) along the direction.

e Special properties: Symmetrice. gjj = gji. This means that only six components @f
need to be stored during computations since the other tlarebe readily computedote
There are different convention for the order of storing edata ofo (e.g.diagonal elements
first, then off-diagonal; alternatively, upper right hamdiesordering).
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Cauchy’s formula: if you multiply the stress tensor (treasd matrix) by a unit vecton,,
which is normal to a certain plane, you will get the tracti@ctor on this plane (see above):

In a model, the stress tensor is usually computed by solWiegtuilibrium equations.

Note The number of equilibrium equations is less than the nurabenknown stress tensor
components.

2.2.3 Strain and strain rate tensors

A matrix, two indexed variables, tensor of rank two, like gteess matrix.

Meaning of the elements: Diagonal elements are elongataige)(i.e. the relative changes
of length in coordinate axes directions), off-diagonalned@ts are shearse. deviations
from 90” of the angles between lines coinciding with the coordinatsalirections before
deformation.

Special properties: symmetric.

Strain and strain-rate tensors are a measure of the infmaé&mall, of order %, as opposed
to finite, i.e. large) deformation (rate). Strain and strain-rates contwestress (forces) via
the rheological (constitutive) relationships.

Computed from the spatial gradients of displacemeaiatisd velocitiew for strain and strain-
rate, respectively.

1 /0u  0duj
e o (U oy 2.66
i z(axj+axi (2:69)
. 1 aVi an
O ] 2.67
' 2(0xj+axi ( )
ov 1(ov ov: 1 ( ov ov
Mo s(%erR) s(5eed
_ 1 ( ov: ov: ov 1 ( ov ov
— AR A et o (2.68)
1 [ 0v: ov 1 (ov ov oV
3 (o T ox ?(a_é’LaTé) 8

Note The number of velocity components is smaller than the nurabstrain rate compo-
nents.

Note Engineering strainy, is often used by commercial finite element packagesyaad
2€yy.
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2.2.4 Constitutive relationships (rheology)

¢ A functional relationship between second rank tensors iieerkatics €, €) and dynamics
(forces,0). For example,
Elastic: 0jj = Agidij + 2Lgj]
Incompressible viscous:gjj = — pdjj +2r]'sij

2u

Gij

Maxwell visco-elastic (for deviators): &jj = o

_|_

Here,A, 1 are elastic moduli (for an isotropic medium, there are twakland shear) inde-
pendent moduli which can be related to all other commonlyg yseameters such as Pois-
son’s ratio). n is (dynamic, shear) viscosity, bulk viscosities are uguaisumed infinite.
Sometimes, kinematic viscosity=n/p is used.

e To solve a problem starting from the equilibrium equatianddrce balance, one can replace
stress by strain (rate) via the constitutive law, and th@tace strain (rate) by displacement
(velocities). This results in a “closed” system of equagion“fundamental” variables, mean-
ing that the number of equations is equal to the number of omkis, the basic displacements
(velocities).

e Material parameters for solid Earth problems can ideallplb&ined by measuring rheolo-
gy in the lab. Alternatively, indirect inferences from se@ogy or geodynamic modeling
augmented by constraints such as post-glacial reboundtadsedused.

e There are three major classes of rheologies:

— Reversible elastic rheology at small stresses and stragrsstwrt time scales.

— Irreversible fluid flow (creep) at large strains and over Itinge scales. Examples are
Newtonian viscous (rate-independent) or power-law (stitegs dependent) rheology;
usually thermally activated. Intermediate stress levels.

— Rate-independent (instantaneous), catastrophic yiellingrge, limit stresses. Pres-
sure sensitive, often temperature independent. Alsoccpliestic, or frictional (brittle),
behavior. Important for cold material over long time-ssale

2.2.5 Deriving a closed system of equations for a problem
Conservation laws
Conservation of mass (continuity equation)

o(pvi)
0%

op _op
EJrD(pv) =5

=0, (2.69)
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wherep is density andr velocity. For an incompressible medium, this simplifies to

oV 3 v,
.v=0 or —=) —=0. 2.70
7%~ 2, 0% (2.70)
In 2D, the incompressibility constraint can be incorpadddg solving for astream functior(see
the Lorenz problem) instead of the actual velocities. I§téad, the fundamental variablesre

solved for, special care needs to be taken to ensure&tf) folds.

Conservation of momentum (equilibrium force balance)

Dv

- 2.71

Df — HO+PY, (2.71)
or

Dvi oV 0vi\  00j .
whereg is gravitational acceleration.
Conservation of energy
OE OE g

whereE is energyg; the energy flux vector, an@ an energy source (heat production).

Thermodynamic relationships

Energy (heat) flux vectorvrs. temperature gradient (Fick’s law)

oT
i = —k— 2.74
0] X ( )
wherek is the thermal conductivity.
Equation of state 1 (“caloric” equation)
E =cppT (2.75)

wherecy, is heat capacity, andl is temperaturelf all material parameters are constant (homoge-
neous medium), we can then write conservation of energy as

DT 4T )
— =2 4v.OT =kO0?T +H 2.7
Dt~ at +v-OT =kOT + (2.76)
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or

oT oT 0 0 0°T

with H = Q/p and the thermal diffusivity

K= —. (2.78)

Equation of state 2: relationships for the isotropic parts ofthe stress/strain tensors

p="f(T,p) (2.79)

wherep is pressure (notg = PoEkk)-

Equation of state 3. Boussinesq approximation assumes the material is incompressible for
all equations but the momentum equation where density alesrare taken to be temperature
dependent

Ap = apoAT, (2.80)

with a the thermal expansivity anfip the density difference from reference stpgefor tempera-
ture differenceAT from reference temperatufe

2.2.6 Summary: The general system of equations for a continuum media in

the gravity field.

ap ap"' — 0 (2.81)
<6v. aVI) _ %|J+pgl (2.82)

X

E), 0a _

()5 - (2.83)
E = cppT (2.84)
p = f(T,P) (2.85)
& = R(Gij,05) (2.86)

oT
g = —k& (2.87)

wherep is densityy; velocity, g; gravitational acceleration vectdt,energy,g; heat flux vectorQQ
an energy source (heat productierg.by radioactive elementsj,is heat capacityl temperature,
p pressure anll thermal conductivityR indicates a general constitutive law.

Known functions, tensors and coefficients: gi, cp, f(...), po, R(...), andk
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Unknown functions:
number of equations.

P, Vi, P, Gij, ¢, andT. The number of unknowns is thus equal to the

Example: The Stokes system of equations for a slowly moving imempressible linear viscous
(Newtonian) continuum

g—‘): ~-0 (2.88)

%ixijj +Pogi =0 (2.89)

PoCp (%—I +Vii—-:-> = % (kg—;> +poQ (2.90)
&j = Z—H (2.91)

Gij = —Pdij + Gij (2.92)

Major simplifications: No inertial@p/Dt) terms (infinite Prandtl number, see non-dimensional
analysis), incompressible flow, linear viscosity.

2D version, spelled out

Choice of coordinate system and new notation for 2D:

Oxx O
gi = {0,—9}, xi = {X,z}, Vi = {W, Vz}, Ojj = ( 0)2(2(( 0)2(2 > (02x = Oxp).
The 2D Stokes system of equations (the basis for basicaflyyenantle convection/lithospheric
deformation code):

% %_VZZ S (2.93)

e =0 29

Ou = —pton (296)

Oz = —p+2r]%—vzz (2.97)

Oxz = n(%qt%) (2.98)
pocp(%_ﬂvx‘;_lwz"’a%) _ k("%ﬁg)w@ (2.99)
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2.3 Scaling analysis and non-dimensional numbers
Reading

e Spiegelmar(20049), sec. 1.4

e Turcotte and Schube(2002, Google, and Wikipedia for reference and material paramet

2.3.1 Introduction
Scaling analysis

Scaling analysis refers to order of magnitude estimatesoandifferent processes work together
if we are interested in getting a quick idea of the values #natof relevance for a problem. For
example, shear stresgor a Newtonian viscous rheology with viscosifyis given by

T=2n¢ (2.100)

wheree is the strain-rate. Say, we wish to estimate the shear strespart of the crust that we
know is being sheared at somed. plate-) velocityv over a zone of width.. The strain-rate in
3-D is really a tensor with & 3 components that depends on the spatial derivatives oftloeity

like so 178 5
. Ui uj
Si==|=—+—=— 2.101
g 2<axj+6xi>’ ( )
and has to be either constrained by kinematics or inferrethiofull solution. However, for our
problem, we only need a “characteristic” valuie, correct up to a factor of ten or so. Strain-rate

is physically the change in velocity over length, and therabieristic strain-rate is then given by

Y
eld— (2.102)
L
wherel]l means “proportional to”, or “scales as”, to indicate that(@dL02 is not exact. Assuming
we know the viscosity), we can then estimate the typical stress in the shear zoree to b

10 2n‘—L’. (2.103)

If you think about the units of all quantities involved (“démsional analysis”), then this scaling
could not have worked out any other way. Viscosity is Pa gg¢sttimes time), velocity m/s (length
over time), so stressPa s m/(s mPa as it should be. (We will always use Sl units unless it’s
inconvenient for Earth applications, where we might usetiplels of Sl units such as cm/yr instead
of m/s for velocities.)
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Non-dimensionalization

A complementary approach that also takes into account ttier af magnitude of variables is
to simplify the governing equations by defining “charadtei’ quantities and then dividing all
properties by those to make them “non-dimensional”. Thig,wlae non-dimensional quantities
that enter the equation on their own should all be of ordetywso that the resulting collection of
parameters in some part of the equation measures theivesiaportance.

A classic example for this is based on the Navier Stokes exquidr an incompressible, New-
tonian fluid. When body forces driving flow are due to temperaiufluctuations in (the Earth’s)
gravitational field

pg—ll = —Dpd+r]D2v+ poaTg (2.104)

whereD is the total, Lagrangian derivativ®  0/0t + v - [), v velocity, [ the Nabla derivative
operator] = {0/0x,0/0y,0/0z}, t time, pq the dynamic pressure (without the hydrostatic part),
n the viscosity,pg reference densityy, andg gravitational acceleration. One can now choose
(as mentioned as for the Lorenz equations) typical quastitiat can be derived from the given
parameters such as/ temperature difference, a fluid box heightand some choice for the
timescale. All other characteristic values for physicalgarties can then be derived from those
choices.

A typical one is to use the diffusion time that can be consédidrom the thermal diffusivity,

K, in the energy equation
DT >
— =KUT 2.105
gt =K ( )
(no heat sources) that couples with the momentum equatiprf2€04. Because has units of

lengtif/time, any diffusion-related time scatefor a given lengthd has to work out like
tg 0 d?/k (2.106)
(see above). Using the characteristic quantitieshich result from this scaling for all variables
ineg. .109 and eq. 2.109, e.g.

tc d
we divide all variables (spatial and temporal derivativesteealt with like space and time variables)
to make them unit-less, non-dimensiofiak= f/fc, and eq. 2.109 can then be written as

1DV /N AV
DY ~0'p + ()% — RaTe, (2.108)
where we've used = ge,. Often, we just drop the primes and write the equation like so
1 Dv
— = _[p+ D% —RaT 2.1
Pr Dt p+ 0% —RaTe, (2.109)

where it is implied that all quantities are used non-dimenaiized. This equation may still be
hard to solve, but at least we now have sorted all materialpaters into two numberRaandPr.
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Note: The non-dimensional versions of the equations are alsodkedhoice if you want to
write a computer program for a physical problems. Using donensionalized equations, all terms
should be roughly of order unity, and the computer will notdhéo multiply terms that are very
large in Sl units €.g.n) with those that are very small, reducing round-off ermg(v, what is
the order of magnitude af and of |v| for mantle convection?). This also means that when some
geophysicist’s convection code spits out, say, velogitiesi will have to check what units those
have, and more often than not you'll have to multiply by thérom above to get back m/s, which
you'll then convert to cm/yr. You'll also note that a few ggo@mics papers will not provide the
scaled quantities used so that you can go back to Sl unitsetsoes this is because the values
used for the parameters in the models stray significantiy frygpical Earth values.

Going back to eq.4.109, all material parameters have been collected in two @sis-humbers
after non-dimensionalization, the PrandIt number,

Pr — % (2.110)
and the Rayleigh number
3
Ra— %. (2.111)

Particularly the latter is key for mantle convection, anthiare discussed below. Fluid dynamics is
full of these non-dimensional numbers which are usuallyedafter some famous person because
they are so powerful. Any fluid that has the saReandPr number as another fluid will behave
exactly the same way in terms of the overall style of dynaméteh as the resulting average
temperature structure and up and downwelling morphology.

The actual time scales of convectiang, may, however, be very different for two systems at
the same Rayleigh number (becausebeing different). This behavior allows, for example, to
conduct analog, laboratory experiments of mantle conwvedé.g.Jacoby and Schmeling987).
When conducting such experiments, care needs to be takeallttelevant non-dimensional num-
bers agree between the real Earth problem and the laborexpsriment ¢.g. Weijermars and
Schmeling1986. Also, when changing length scales and material, diffepégsical effects such
as surface tension may matter in the lab, while they areeivegit for mantle convection in general
(seee.q, sec. 6.7 oRicard, 2007, for a discussion of Mahagoni convection).

From an analytical point of view, if the non-dimensional gtikes are either very large or very
small, we can simplify the full equations to more tractaljpeal cases. For a nice and more
comprehensive treatment of this section, you may want &r tefRicard (2007) (the PDF is on
our web page).

2.3.2 Problems

1. For all of the following non-dimensional numbers, disbsiefly (2-3 sentences) the pro-
cesses which these numbers measerg,by contrasting system behavior foth= 0 and
Th= oo, whereT his some non-dimensional number.

For each number, give numerical estimates for the Earthegptesent day. Document your
choices for individual parameters before computing jourrmtities, mention where you got
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the estimates from, and what the implications for Earth imgeof the dynamics are. A neat
way to organize this might be to use a table for each dimetegssmumber with appropriate
headings€.g.Parameter, estimate, reference).

You might have to look up definitions and other reference nadfee.g.in a geodynamics
text, or on googler{ote don’t trust everything on the web ...). There are no uniquexneers
for this part of the problem set, and you will often have toide@mn an example problem
for which you’ll pick a characteristic quantity such as ldngSome answers are actively
debated in the literature.

1.1 Rayleigh number for whole and upper mantle convection.

1.2 Peclet number for ridges, slabs, and general mantleection. The Peclet number is

defined as
_dv

K
with characteristic lengtt, velocityv, and thermal diffusivity.

1.3 Prandtl number for the mantle and the atmosphere. Onceeyfigured out the mean-
ing of the Prandtl number, think of the different responsé¢hef mantle to an applied
pulse of change in plate motion, compared to an applied milkeating.

1.4 Reynolds number for the mantle, the ocean, and a tornale.R€ynolds number is
defined as

Pe (2.112)

Re= V—d = vd_p
v n
Note: Take care to distinguish between velocitykinematic viscositw = n/p and
dynamic viscosityn.
1.5 Deborah number for a pancake of the subducting ocedhasphere. The Deborah
number can be defined as

(2.113)

i

De= (2.114)
tp
where you can use a Maxwell time
ty = % (2.115)

for the relaxation time;, andtp is the time scale of observation. The Maxwell time
measures the visco-elastic relaxation time of a body wihasgityn and shear modulus
U (think post-glacial rebound).

e What are characteristic Maxwell times for the crust? The uppentle?

2. 2.1 Consider a solid, sinking sphere of radiuga a fluid of viscosityn and gravitational
pull g, and a density contrast between sphere and flulgoofSolve for the approximate
sinking velocity of this “Stokes” sinker by equating the gtational pull forceFp =
AMg =V Apg with the shear force acting on the sphere’s #gas [ TA [ Anéc. Here,
I've usedAM for the mass anomaly, andifor the volume of the sphere. All equations
follow from F = maand stress = force / area and some geometry.
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2.2 For flow induced by a Stokes sinker, does the stress sdhle\&nd/orAp? How does
that compare with the velocities?

2.3 Estimate the Stokes velocity by dimensional analysia &), but now assuming that
the viscosity of the fluid obeys a power-law,

" 0ne (2.116)

(for rocks,n ~ 3) instead of

10ne (2.117)
for Newtonian creep as assumed above. (These equationsitieasloppily and don’t
have the right units. For correct units, consider a relatigmliket (T/p)”_1 =ng, but
you may use eg2(116 for the scaling analysis.)

2.4 Estimate the rise velocity of a plume head large enoughuse the Deccan traps.

3. You are moving the top of a fluid layer of heigitat constant speedz = d) = vp, and
the fluid is held fixed at the bottom at= 0. In this case, the laminar solution for the flow

velocity is a linear decrease of velocity with depth/{6) = 0 at the bottom.

3.1 What material parameters set the stress in the fluid? Whatndees the strain-rate
and how does it vary with depth?

3.2 Now consider two fluid layers, with the top fluid viscodéyger than the bottom one
by a factor of two. Sketch the solution for the dependencé ot

4. Using dimensional analysis, such as used above for theSsinker, estimate the velocity

of a volcanic eruption (see Figure below for parameters).
Hint: You might want to proceed by first using the equations foriteam pressure-driven
(look up “Hagen-Poiseuille”) flow in a pipe of radils, and then estimate the pressure dif-

ference from the Figure below.
IV

Hh
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Chapter 3

Introduction to Numerical Geodynamics

3.1 Numerical methods in the Earth Sciences

3.1.1 Philosophy

e Avoid black boxes€.g.commercial codes) in general. They may or may not do whatikeu |
them to do; if they don’t, you're out of luck because if you nahmodify the source code.
Exception for “good” black boxes are matrix solver and linelgebra packages, generally
speaking (but see se®.3.3.

e Create, or understand, as much code and theory as possibielfpno matter if you are
geophysicist or geologist.

e There is no “Easy” button, but you don’t have to be a math-weitizer!

3.1.2 Goals of this course

e Provide you with a basic understanding of numerical modelusing solid Earth science
problems as an example.

e Solve simple research problems using tools presented &3 @®ng with those you write
yourself. Start thinking about a final project!

e Help you become an informed, empowered user and creatomeémncal codes.

e Introduce some math and computer science along the way.
This course cannot

¢ be mathematically throrough (no proofs, etc.)
e be comprehensive

e be cutting edge

because we need to cover a lot of ground.

34



CHAPTER 3. INTRODUCTION TO NUMERICAL GEODYNAMICS

3.1.3 Textbooks and reading

e These lecture notes and handouts (available at
geodynamics.usc.edu/"becker/preprints/Geodynamics54 0.pdf )

Myths and Methods in Modelingy Spiegelmarf2004)

Matlab Introductionby Spencer and Warg2008

Elsevier Treatise article ddumerical methods in mantle convectimnZhong et al(2007)

PossiblyGerya(2009 andlsmail-Zadeh and Tacklg2010 for reference, but we have not
read those books yet.

3.1.4 Recommended Reading

o Numerical Recipeby Press et al(1993, 2" or 39 edition (possibly available online as
PDF)

e Geodynamic®y Turcotte and Schube(2002 for background
e The finite element methdny Hughes(2000), if you need more detail on FE.

e The finite element classic Bathe(2007) also makes for good reading.

3.1.5 Overview of applications of numerical methods for Earth sciences

Slides showing examples from

e inverse theory (seismic tomography)

lithospheric dynamics

mantle dynamics

seismology

magneto - hydrodynamics

3.1.6 Classification of numerical problems & solution methods
Forward Problem

1. formulate model

2. identify theoretical description
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3. solve

e dimensional analysis

e analytical solution

check if this is a standard problem someone else has solved
check if terms can be neglected to simplify

check if equations can be linearized
numerical solution

Distinguish between model and simulation

A good model is as simple as possible to satisfy the most itapbconstraints with the smallest
number of parameters, to understand the underlying phygicsimulation tries to mimic what
a system looks like, in a kitchen sink, lots of parametersl lahapproach. To some extent, this
distinction is a matter of taste, but a good model can prothégundamental description needed
to understand theshy of Earth’s dynamics.

Inverse problem

1. Formulate a modek(g.Earth’s mantle wave speed variations are smooth)
2. Identify theory €.g.can treat seismic waves as rays)
3. Collect data

4. Solve a (linear) inverse problem

3.2 Examples of applications for numerical methods

3.2.1 Linear inverse problems

— computational linear algebra

3.2.2 Ordinary differential equations

— Runge-Kutta, Burlisch-Stoer integration methods, for exanghis will be dealt with in the
next lecture, seé.?2)
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3.2.3 Partial differential equations

Finite Differences (FD)

FD approximate differentials by Taylor series, then appnate equations to solve.
Pros e conceptually simple

Cons e bad for sharp contrasts
e bad for complicated geometries

We will look at FD during the first part of the course.

Finite Elements (FE)

The FE method is complicated conceptually, but providespgnaximate solution to equations.

Pros e good for sharp boundaries
e good for complicated geometries
¢ allow easy lateral mesh refinement

Cons e coding more complicated
¢ need to carefully choose elements, integration methods, et

Spectral methods

Spectral methods expand the spatial solution as harmonatifuns (can use FFT), and solve time
evolution as an ODE for coefficients.

Pros e just for homogeneous media

Cons e non-local
e poor performance for lateral variations in material proijesr(need to iterate)

Gas lattice and other microscopic methods

These methods do not provide a clear relationship betweeromiles and the continuum PDE'’s.

3.3 Computing

At USC, GEOL425 (Quantitative methods in the Earth Scienard)theClanguage summer short
course will provide you with some more exposure to basic agerpprogramming skills. Here,

we very briefly note some hardware related issues, give a fegr@gmming tips, and then move
on to get started programming using the Matlab languagesiméxt section. You can also refer to
the hardware notes éfress et al(1993 for some background on machine architecture.
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3.3.1 Hardware issues

At a low level, a computer stores information in the binargtsyn,i.e. in bits that can hold the
values of either zero or one. You can then use a byte (8 bits)¢ode numbers from 0t§2 1 =
255 using the binary system. For floating point or largergats, more memory is required. A
single precision float take up four bytes and is accurate up 5610/, a double precision float
up to~5-10"15,

— A numerical representation of a float will always be appraden(only integers are exact).
This means to not test for== 0 (equal to zero) buabgx) < € (abgx) = |x|) wheree
depends on implementation.

— The detailed storage depends on the hardware, “big endrari8mall endian” ?

— Some mathematical operations that are theoretically valldead to large round off errors.
e.g.cos 1(x) for smallx, substracting large numbers from each other.

— The memory requirements for a float vector will be half of thia double.

Memory

1 MB (megabyte) corresponds 10241024 bytes; 1 GB = 1024 MB. As of 2008, your PC will
have likely have at least 2 GB of Random Access Memory or RAM (as opposed to hard drive
space) meaning you can store how many floats and doubles?ciBage the available memory,
one can use formerly called “supercomputers”. Those cbiise days mainly of

Distributed memory machines e.g.200x 2x quadcore (8 Central Processing Units or CP8)
GB RAM machines which need specially designed software toemede of parallelism,
e.g. Message Passing Interface or MPI.

Shared memory machinesThis is the more expensive, old school approach where devBtas
can share a larger than normald.256 GB) memory. Compilers can sometimes help make
your code make use of “parallelism’e. having the computational time decrease by using
more than one core or CPU. Right now, typical PCs can be considbezed memory (multi-
core,i.e. CPU) machines.

Note how hardware and software are intertwined.

3.3.2 Software - Computer Languages
High level languages

— run interpreted
Examples: Matlab - numerical computations
Octave (a free Matlab clone)
Mathematica for symbolic math
Python for programming and scripting
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Pros:

e rapid prototyping, convenient abstractions

e convenient debugging

e easy access to visualization (key for validation)
Cons:

e interpreted at runtime, can be slow

e may require paying license fees

Low level languages

— compile before run
Examples: “serial” C, Fortran 77, Fortran 95

object-oriented: C++, Java, Python
Pros:

¢ freely available compilers and development tools
e fast, particularly C, and Fortran

e numerous libraries and code fragments available
Cons:

e Need to compile

e “Asis”, no standard interface to plotting

e More hands-on & detail-oriented work requiredg.memory allocation

Lowest level languages

Assembler code:

This is what the CPU actually understands and consists of basrations, e.g. “place number
on stack, multiply with second number”. A “compiler”s jobto translate low level to lowest level
language, and do this as efficiently as possible. Note thapder “optimization” can improve run
times by factors of 10-100, and care should be taken whernngribw level code to help the
compiler.

Likely, you will never see assembler code, but you might ble &b benefit from the work
others have put into this (see hardware optimization below)
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How to choose a computer language?

The best choice of language, hardware, and method will awd@pend on the problem at hand.
For simple analysis, Matlab or the free python language pkisnsions may be all you need.
If you need more highly optimizede(g. faster, 3-D, parallel) performance, F95 and C are good
choices. As with all other crafts, experience will bring ydaser to perfection, but keep in mind
that paying attention to detail may save you a lot of time méhd!

3.3.3 Elements of a computer program

Here’s a non-sensical program written in the Matlab languagllustrate a few concepts.

% This is the main program. Notice the ‘%’ symbol - it means thi s line is
% a comment and will be ignored at run time.

I =0 % assign integer variable for loop

n = 100; % some number of elements

x = zeros(n,1); % allocate and initialize a vector x[] with n e lements
y

for i = 1in % loop from i =1, 2, ..., n
X)) = y'2; % assign some value
y = y+2; % increment variable
end % close loop
% notice the statements inside the loop are indented.
=1
while (i <= n) % different loop construct
X(@1) = mysin(x(1); % function call
i = i+l
printf("%g\n", x(i)); % output statement
end

% This is the subroutine or function 'mysin’
function result = mysin(xloc)
result = sin(xloc);
% Note that this subroutine will not know the main programs
% variables, they are "local".

3.3.4 Guiding philosophy in writing a computer program

1. Modularizeand test for robustness.

e Break the task down into small into small pieces that can bsegwithin the same
program or in another program
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e Test each part well before using it in a larger project to madee more robust.

2. Strive forportability

Don't use special tricks/packages that might not be aviglab other platforms.

3. Comment

e Add explanatory notes for each major step, strive for a imaadf comments to code
> 30%

This will help reusability, should you or someone else wannhbdify the code later.

4. Use ‘structure$, avoid globals

e If variables are needed in several subroutines, do not uebdlj declaration, but pass
a structure that contains a set of variables.

5. Avoid unnecessary computations

See below for common speed up tricks.
6. Visualizeyou intermediate results often (But don't print it all out iolar!)

Bugs in the code can often be seen easily when output is amadyaphically, and may show
up ase.g.

e lines being wiggly when they should be smooth
e solutions being skewed when they should be symmetrical
e etc.

Object oriented programming forces you to follow rules 1 &t(so much 2). Editors and
advanced development environments (such as the Matlab &gWith 3 & 6.

3.3.5 Guidelines for writing efficient code

1. Avoid reading and writingntermediate step® “file” , i.e. on the hard drive (Input/Output
or 10) if at all possible.

2. Use nested loops that are sorted by the fastest/majox ([a@gends on languageg.g.in
Matlab
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for i = 1in % increment i across all rows
for j = 1Iim % row i computations across all columns j first
X(ij) = x(ij) + 5;
end
end

and not the other way around, wectorize

X =X + 5 % x here can be a matrix or a vector

3. Avoid if statementas much as possible.

if(optional == 1) % evaluating this expression will take tim e
% do this

else
% do that

end

if optional is usually zero, comment it out using preprooeshrectives.

4. Precomputeeommon factor to avoid redundant computations.
For example, instead of

for i = Lin

x(i) = x(i)/180*pi;
end

It is better to do

fac = pi/180;
for i = 1in

X(i) = x(i)*fac;
end

because it entails one less division per step.

5. Share the code

The more eyes, the less bugs, and the better the performance.
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6. Usehardware optimized packagés standard task®.g.

e LAPACK for linear algebra
This package is available highly optimized for several aechures.

e FFTW for FFT,
an automatically adapting package.

Different hardware makes certain chunks of memory sizeda¢lie” ) operations highly
efficient (seege.g.Dabrowski et al, 2008 as used later in class).
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3.4 Introduction to MATLAB

Reading

e Spencer and War@008, secs. 1-7, 9-9.3, 12-12.4.

e Forreference: Matlab online help desk

3.4.1 Introduction

Matlab is commercial software that provides a computingremment that allows for sophisticated
ways of developing and debugging computer code, executogy@ms, and visualizing the output.
Matlab is also a computer language (sort of a mix between G-artdan) and this exercise for you
to work through is mainly concerned with some of the langusspects that we will use extensively
throughout the course. Please read through the more coensiek and verbose Matlab Intro and
familiarize yourself with Matlab.

All of our Windows and Linux machines have Matlab installex after starting up the pro-
gram, you will be presented with an interactive window whgve can type in commands as we
indicate below. Please also familiarize yourself with tkieeo components of the development en-
vironment, such as the built-in editor for Matlab programikich are called “m-files”, so that you
can be more efficient in writing and debugging codes. Thezenamerous Matlab-provided help
resources accessible through the environment, includohgpvutorials, access to the help pages,
along with extensive documentation on the web.

Also note that there is a free clone of Matlab called octaveveGthat Matlab often uses
freely available computational routines underneath thedh@ was fairly easy to reproduce the
computational basics of Matlab. However, the Matlab peajde added a bunch of proprietary vi-
sualization tools which are not available in octave. Anot#iternative is to use the freely available
Python language and its MatPlotLib package, but we will rastehtime to explore such intriguing
options in class.

MATLAB is entirely vector or linear algebra based. It is tefare useful to briefly review some
basic linear algebra.

3.4.2 Useful linear algebra (reprise)

Let's define a vectob as:
b= ( 5 10 17)

and a 3 by 2 matri as:

O

I
a AR
o wN
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The transpose (denoted with is given by:

Matrix-vector multiplication:
145\ (2> 130
TRT _
Db _<236) 13 _(142)

Vector-vector multiplication (dot product):

5

bb" = (5 10 17)(10)_(414)

17

Matrix-matrix multiplication:
DD — 1 45 L g [ 42 44
n 2 36 5 6 -\ 44 49

If you don’t know what'’s going on here, and what the rules factsmultiplications are, please
consult sec2.1

In numerical modeling, or in geophysical inverse problems frequently end up with linear
system of equations of the form:

AN

Ac = Rhs

whereA is an x mmatrix andRhs is an x 1 vector whose coefficients are both known, and a
mx 1 vector with unknown coefficients. If we take= D andRhs = b', ¢ is (check!):

- (3

3.4.3 Exploring MATLAB
Getting started

To start the program on the Linux machines tyatlab at the UNIX prompt, or click on the
relevant Windows item. The MATLAB environment, includingetcommand window, starts. (If
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you want to avoid bringing up the whole environment on Linuse “matlab -nojvm” for no-java-
virtual-machine.)
1. Type2+3. You'll get the answer. Type2 + 3*9 + 572 .

2. Type the following commands and note how Matlab deals wetttors

>>X=3
>>X=3;

>>X

>>y=X"2

>>X = [2, 5.6]
>>y=2 * X;
>>y=X"2 ;
>>Y=X."2
>>y = [3, 4]
>>X *y
>>X *y
>>X *y
>>pi
>>a=X*pi

3. Typedemo and explore some examples. Also note the introductoryiadtaideos you might
want to watch later.

4. Typehelp . You see a list of all help functions. Typelp logl0 to get information about
the log10 command. Typkelp logTAB wherelogTAB means typing log and then pressing the
TAB key without adding a white space. Notice the command detign selection within the
Matlab shell. Note also that you can use the Up and Down artowatrieve previous commands
and navigate through your command history, @@ will bring up the last command line that
started with @. MATLAB also offers a graphical user interface (GUI) to exyd all of its features:
click help in the menu bar, then product help. Moreover, timefion browser offers you a graphical
way to find the suitable function for what you are trying to@oplish. The function browser can
be found under help, functions browser, or can be broughsunqgua keyboard shortcushift+F1

Vectors/arrays and plotting

5. Create an array of x-coordinates

>>0x=2
>>x=[0:dx:10]

6. Y-coordinates as a function of x

>>y=X."2 + exp(x/2)
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7. Plot it:

>>plot(x,y)

8. Exercise: make a plot of a parametric function. What is it?

>>1=0:.1:2*pi

>>x=sin(t); y=cos(t); plot(x,y,'0-)
>>Xlabel(’x’)

>>Yylabel(’y’)

>>axis image, title('fun with plotting’)

Exercise: make an ellipse out of it with short radius 1 andjlcadius 2. Also change the color of

the curve to red.

Matrices and 3D plotting

First create x and y arrays, for exampte[1:5];y=x;
9. Play with matrix product of andy. Typing

>>Xy

performs an element by element product of the two vectorte (the dot)

>>X
returns the transpose
>>X*y.
the “dot” or scalar product of two matrices
>>X*y

the matrix product - returns a matrix.
Some commands (try them):

>>ones(1,5), zeros(6,1)
>>length(x)
>>whos

10. Create 2D matrices.

A useful function is meshgrid, which creates 2D arrays:

>>[x2d,y2d] = meshgrid(0:.1:2*pi,1:.1:2*pi)
You can get the size of an array with:

>>size(x2d)
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11. Plotting of the functiosin(x2d.*y2d)

>>z2d = sin(x2d.*y2d)
>>surf(x2d,y2d,z2d)
>>mesh(x2d,y2d,z2d)
>>contour(x2d,y2d,z2d), colorbar
>>contourf(x2d,y2d,z2d), colorbar

Some cool stuff (1)

>>[x2d,y2d,z2d] = peaks(30);
>>surf(x2d,y2d,z2d); shading interp
>>light; lighting phong

Some cool stuff (2): perform the example given at the end of
>>help coneplot;

Other useful commands:
clf : clear current active figure
close all : close all figure windows

Matlab scripting

By now you must be tired from typing all those commands all ikt Luckily there is a Matlab
script language which basically allows you to type the comasan a text editor. Matlab scripts
are text files that end with the suffix “.m”.

12. Use the built in editor (or another text editag. Emacs) and create a file “mysurf.m”.

13. Type the plotting commands from the last section in theftee. A good programming
convention is to start the script witttear , which clears the memory of MATLAB.
Another good programming practice is to put lots of commerggle a Matlab script. A comment
can be placed aftég e.g. % this is my first Matlab script

14. Start the script from within MATLAB by going to the direxy where the text file is
saved. Typenysurf from within MATLAB and you should see the plot pop up in a newufig
window. Alternatively, within the Matlab editor, you cangssF5 to run. Also note that there are
various debugging features in the editor that are very belglich as real-time syntax checking
and addition of breakpoints.

Loops

Create an arraga=100; a=sin(5*[1:na]/na); plot(a)
15. Ask instructions on using "for”:
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>>help for
16. Compute the sum of an array:

>>mysum=0; for i=l:length(a), mysum = mysum + a(i); end; mysum
17. Compare the result with the MATLAB inbuilt functicam

>>sum(a)

18. Exercise. Create x-coordinate arraly=0.01; y=cos([0:dx:10]) . Compute the integral
of y=cos(x) on the x-interval & x < 10. Use sum(y) and write a Matlab-script. Compare it with
sin(10), the analytical solution.

Cumulative sum

19. Create a number of sedimentary layers with variable ti@sg.
>>thickness = rand(1,10); plot(thickness)
20. Compute the depth of the interface between different$aye

>>depth(1)=0; for i=2:length(thickness), depth(i) = depth( I-1)+thickness(i);
end; plot(depth)

21. Compare the results with the built in Matlab function cums

>>bednumber=1:length(depth)
> >plot(bednumber,depth,bednumber,cumsum(thickness))

22. What causes the discrepancy? Try to remove ithalgkcumsum

IF command

23. Askhelp if . Find maxima of the above arrdlyickness , and compare it with the in built
functionmax(thickness)

FIND command

24. Askhelp find . Find which bed has the maximum thickness:
find(thickness==max(thickness)) . Is there a way to do this without invoking the find com-
mand? find out by typingelp max

25. Find the number of beds with a maximum thickness less@t&n
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Matrix operations

26. Exercise: Reproduce the linear algebra exercises ineti@ting of this document. Hint: If
you want to solve the system of linear equatidosRhs for ¢, you can use the backslash operator:
¢ = A\Rhs

Functions

Matlab allows you to declare functions that return a valug @se m-files to store those functions.
If you save

function xs = mysqr(x)
XS = X."2;

as amysqr.m in your working directory, you can then use your functiortjiile a regular Matlab
command.

y=[2,3,4]
mysqr(y);

Variables and structures

Matlab stores all regular variables as arrays of sizelwhich are by default of type “double”. To
write more efficient programs, you might at times considelatng integers as actual integers.

More importantly, Matlab affords you with the possibility tollect variables that logically
belong together into a “structure”. This variable will had many sub-variable as you want which
are each addressed with a “.”. For example, if dealing witlthg@akes, you might want to use a
structure like

quake.lon = 100.1;quake.lat = 120.1;quake.depth = 15;

The benefit of this is that you can now, for example, pass “quekfunctions and the function will
locally know that quake actually has the components lonaiatl depth which can be addressed
within the subroutine.

26. Exercise: Write and test function that has two inputs)d gpolynomial . Thepolynomial

structure should have two entries, the order of the polyabmipansiom and a vectoa with n
entries that hold the coefficients such that the functioarnet

y= i;aax“ (3.1)
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Chapter 4

Ordinary differential equations

4.1 Introduction

Reading Press et al(1993, Chap. 17;Spiegelmar{2004), Chap. 4;Spencer and Warg€008),
sec. 16.

ODE An equation that involves the derivative of the function wanivto solve for, and that has
only one independent variable (else it's a PDE).

For example:
3_3(/ = f(x), which can be solved by integration (4.1)
y= / F(x)dx+C 4.2)

whereC needs to be determined by additional information, suchlasuadary conditiorony. If
f(x,y) depends non-linearly op the ODE will normally have to be solved numerically.
The order of an ODE is determined by the largest number oval@res involvede.g.

0%y oy

W +q(x)a—x = r(x) (4.3)
is “second order However, we can always reduce ODEs to sets of first ordeatopus. For
eg. @.3), define

oy
i z(x), then (4.4)
0z
Fv r(x) —a(x) z(x). (49)
Or, in general
oy d
M ey o) or 2 =fxy) *.8)
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is a system for N coupled ODEs, all dependent on the indepmenadeiablex, which is typically
time.y is the solution vector we want to solve for. The actual solutf ODEs will depend on the
types of boundary conditions gnand the initial conditions.

We can distinguish between initial value and two point bargd/alues problems.

4.1.1 Initial Value Problems

We focus here on initial value problems, whgns known for somex = xp, and the system evolves
from there to some; (final time).
Examples are

e spring slider systems

5 K(v—Vp) T=Kk-X (Hooke’s law)
T=1(v,01,02,...) (friction law)
06;
a_tl = f(v,6)
e geochemical box models
v _ f(y); (concentration and fluxes)

3=

low order spectral mode]®.g. for convection

N
VX0 = 3 30 )

(harmonic basis functions for spatial solution (problervg# deal with those))

parametrized convection models
: oT

Q:cpME =H(t) — Qc(t) =H(t)— f(T,t) 4.7)
e particle tracking
oc .
i f(x,t) for each particle (4.8)
0x
— = 4.
5=V (4.9)
which is equivalent to the advection equation
Dc odc
ﬁ—§+vﬂc—f (4.10)
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4.1.2 Two-point Boundary Value Problems

Here,y is given atxg andx;. We will not deal with those, seeress et al(1993, chap. 18. They
generally involve iteration to find the right solution basetthe initial value problems such as the
“shooting method”.

4.2 Solution of initial value problem

Let’s consider the solution of

0
&= f(ty) (4.11)
fromt =tp tot =ty with yo —y(t =to)
tf
D=yot [ f(Ly®)at (4.12)

We can break down the integral insbep sizes from t; to tj + h with n = h % partial integrals
such that we only need to solve

ti-+h
| :/ F(t,y(t)) dt (4.13)
t
as cheaply as possible numerically. The simplest apprdiomés
I = f(t,y(t))h such that (from4.12)
y(ti+h) =y(t) +h-f(t,y(t)) (4.14)

becomes the rule to advangdrom t; to tj + h. This is theEuler method, and a really bad idea.
Consider the graphical representation in Figdire which shows that4.14) is just a simple ex-
trapolation ofy based on the slope &t which is given by equatiord(1]). If y has some curvature
to it, the Euler scheme will lead to large errors!

We can Taylor expangaroundty to get

ay;:o) L —Zto)Za?t(;o) . (t—to>3w L (4.15)

to gain some mathematical insight into the accuracy of tHerBscheme. For our problen4.(L5
becomes

y(t) = y(to) + (t —to)

h? 9%y
Y(ti+h) ~y(t) +h- 1 (Y(to).to) + 5 =5 + - (4.16)
Notice that the error of the Euler scheme goe®dorder of”)(h?), and the scheme itself is only
accurate tdirst order. This means that tiny timesteps would have to be taken foroa golution.
There are several improvements to the Euler method.
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Eel
EL(.{) /
j@‘;‘) (‘ !
oy é{
T
< N +
Figure 4.1: Example Euler method
L
j }’(ABLFM 51‘1"
" ) eveduadc ‘é%_ ot
y&) -~ Ascoion 01 4 Tilr gy,
9(_21& 2) Cte Vb(-*—"d &Co,oc_ VlD
okt~ aolce Yo & ¢
+ 0 Ttk +

Figure 4.2: Example midpoint method

1. The midpoint method of Figure4.2 evaluates the derivative gfw.r.t. tot first at half the

Euler step
oy . oy h
a(tl +h/2,y(ti) + &(tl) 2) (4.17)
and then advancesby that slope
0 0 h
y(ti+h) = y(t) +hZ (6 +hy/2,y(t) + 2 (t)2) (4.18)
ot ot 2
written in terms off
h h
y(ti+h) =y(t) +h f(t + E,Y(ti) + f(tth)é) (4.19)
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or lettingyi+1 = y(ti +h), yi = y(ti), we can write

ki=hf(t,y) (4.20)

h
ke =hf(ti+5.yi+ k1> (4.21)
Vi1 =Vi+ko+ O(h3) (4.22)

and this method isecond order accurateNote that higher accuracy has come at a cbst,
now needs to be evaluated twice and onceyatalue different frony;, and there are overall
more operations per time step. However, since the erronis @@?), we can take larger
time steps.

There are several avenues to refine the midpoint methocefutiht in general the

2. 4™ order Runge-Kutta works well. The rules are

ke =hf(t,y) (4.23)
h  k
o =N+ 2.y +§1) (4.24)
h Kk
ko =N f(ti+ 5. +§2) (4.25)
Ky = hf(ti+h yi +h) (4.26)
. ks ke 5
Vil = y|+ L, ke 5 2,78 5+ +O(°) (4.27)

The next improvement is to adapt the stepsize h during fahwaegration, and especially
tricky functionsf require special methodBress et al(1993 discusses these, and some are
implemented in Matlab.

Read the Matlab help material for how to use the built-in ODIEess. This is discussed Bpencer
and Ware(2009, sec. 16.5. Typically, you want to toge45, and if that failsode113 , or ode155 .
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4.3 Exercise: Solving Ordinary Differential Equations — Lorenz
equations

Reading
e Spiegelmar{2004, chap. 4
e Press et al(1993, chap. 17 (16 in ® ed.)
e Spencer and War@2008, sec. 16

In class, we discussed th&4rder Runge Kutta method as a simple method to solve initial

value problems where the task is to forward integrate a ve¢t from an initial conditionyo(t =
tp) to some times when the time derivatives gfare given by

d

SO =1ty.C) (4.28)
whereC is a vector that holds all parameters that funcfiomight need. Numerically, this is done
by successively computing,, 1 for timet + h from the last known solution foy, at timet with
time steph

Ynr1=~yn+hy'(ht,y,C) (4.29)

wherey’ denotes the approximate time-derivativesyfor

As an interesting example of a three-dimensiogat({y1,y2,y3}) ODE system are thieorenz
(1963 equations. These equations are a simplified descriptidineomal convection in the atmo-
sphere and an example of a low order, spectral numericaisolu

4.3.1 Digression for background — not essential to solving this problem set

For an incompressible fluid, conservation of mass, energynaomentum for the convection problem can be written
as

Ov = 0 (4.30)
%TH.DT = kO?T (4.31)
ov 1 p
—+(v-O)v = viv— —0OP+—g. 4.32
Frl G o0 059 (4.32)

Here,v = n/po is dynamic viscosityy velocity, T temperaturex thermal diffusivity,g gravitational acceleratiom
density, and® pressure. In the Boussinesq approximat(T;) = po(1— a(T —To)), wherea is thermal expansivity
andpg andTy reference density and temperature, respectively.
If we assume two-dimensionality (2-D) xand z direction, and a bottom-heated box of fluid, the box height
d provides a typical length scale. dfonly acts inz direction and all quantities are non-dimensionalizeddbyhe
diffusion time,d?/k, and the temperature contrast between top and baibnwe can write
oT’

W+v'-DT’ = 01 (4.33)

1 /0w 2 oT’
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where the primed quantities are non-dimensionalized (rootéis later). Eq.4.34) is eq. @.32) rewritten in terms of
vorticity w, such thaf1?y = —w wherey is the stream-function, which relates to velocity as

v=0x Yk = {0y/0z, —oy/ox} (4.35)

and enforces incompressibility (mass conservation). Wpoitant part here are the two new non-dimensional quan-
tities that arise, the Prandtl number voon
Pr=—

which measures viscous to thermal diffusion. Pr is hugetfembantle, which is why mantle convection models drop
the left part of eq.4.34). The other quantity is the Rayleigh number

3
Ra_ PoOgAT d
nK

and measures the vigor of convection and is the most impgotrameter for thermal convection.
Lorenz(1963 used a very low order spectral expansion to solve the ctioveequations. He assumed that

(4.37)

Y~ W(t)sin(rax)sin(mz) (4.38)
T (1—12) + T4 (t) cos(max) sin(Tz) + To(t) sin(2mz) (4.39)

Q

for convective cells with wavelengtlya. This is an example of a spectral method where spatial vansin properties
such asT are dealt with in the frequency domain, here with one harmo8iuch an analysis is also common when
examining barely super-critical convective instabiti®igression end.

The resulting equations for the time dependent paramettéie approximate convection equa-
tions are

‘thv — Pr(Ti—W) (4.40)
% — _WhL+W-Ty

dT

22 _ WT-bT

dt 1-bP

whereb = 4/(1+a?), r = Ra/Ra with the critical Rayleigh numbeRa.

4.3.2 Problems

1. IdentifyW, T1, andT, asy1, y»,y3 and write up a Matlab code for 4 4order Runge Kutta
scheme to solve for the time-evolutionytising eq. 4.40 for derivatives.

Hint: You can code this any way you want, but consider the follgwin

e You will want to separate a “driver” that deals with initiadreditions, controlling the
total time steps, plotting, etc., and an actual routine ¢batputes the Runge Kutta step
following the formula we discussed in class. Those shoulddgarate m-files, or at
least separate functions.
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Figure 4.3: Solution to one of the problem set questions visualizing the behavior of thenko
equations.

¢ You will want to make the Runge Kutta stepper independentebtttual function that
is needed to computdy/dt so that you can reuse it for other problems later. This
can be done in Matlab by defining a functionyfunc that computes the derivatives,
and then passing the function namgfunc as an argument to the Runge Kutta time
stepper. Within the time stepper, the function then thenthée referred to as
@func. Alternatively, the function that computes the derivagivan be made into its
own “.m” file, in the same directory as the other subroutimeaking it available to all
subroutines in that folder.

¢ If you need some inspiration on how to do this, download thiderfragments | provide
for this week’s problem set.

2. Use initial conditionyo = {0,0.5,0.5}, parameterd = 8/3, Pr = 10 and solve for time
evolution for all three variables from= 0 tot = 50, using a time step= 0.005. User = 2
and plotT; and T, against time. Comment on the temporal character of the saolutvhat
does it correspond to physically?

3. Change to 10, and then 24. Plol; and T, against time, and also plot the “phase space
trajectory” of the system by plottingin W, T;, andT, space using Matlaplot3 . Comment
on how these solutions differ.

4. Increasea to 25 and plot both time behavior df and the phase space trajectory. What
happened? Compare the- 25 solution with the = 24 solution from the last question. Do
you thinkr = 24 will remain steady for all times? Why? Why not?
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5. User =30 and show on one plot holy evolves with time for two different initial conditions,
theyp from before {0,0.5,0.5}, and a second initial conditiof0, 0.5,0.50001}. Comment.

6. Compare your solution with = 0.005 for Ty and an initial condition of your choice in the
r = 30 regime with the Matlab-internal ODE solver you deem mgirapriate. Plot the
absolute difference of the solutions against time. Comment.

Please hand in all your results before the next lecture id bapy form. Print out all code you
have written and also key figures, like the ones I've askedlfabel all plots with axes and title
descriptions, identify which curves show what. Explainséps, and comment your code. When
discussing results, 2-3 sentences should normally be ismffidHandwritten notes, if legible, plus
print-outs for code and graphics are sufficient.

4.3.3 Additional experiments

If you are curious about additional Earth Science applcegtiof ODESs, the literature of geo-
chemical modeling is full of it because it is often easiestnost appropriate, to consider fluxes
between reservoirs of different chemical species with ayes properties, so-called “box mod-
els” (e.g.Albarede 1999. A classic example from magneto-hydrodynamics is the 3-Kit&ke
dynamo model that consists of two conducting, coupled irgatisks in a background magnetic
field. The Rikitake dynamo shows behavior similar to the Larsystem and serves as an analog
for magnetic field reversal.

Examples from our own research where we have used simple @DEoS, include some
work on parameterized convectidnofyd et al, 2007), a method that goes back at leasSthubert
et al. (1980, seeKorenaga(2008 for a review. In this case, the box is the mantle, and thd tota
heat content of the mantle, as parameterized by the mearetatage, is the property one solves
for.

Another example, from the brittle regime, are spring skdénstead of dealing with full fault
dynamics, one may consider a block that has a friction lawyagpits base and pulled by a
string. Depending on the assumptions on the friction lashsusystem exhibits stick-slip behavior
akin to the earthquake cycle. For rate-and-state Yelocity and heal-time) dependent friction
(e.g.Marong 1998 with two “state” variables, spring-slider models exhiliteresting, chaotic
behavior Becker 2000. This behavior includes the characteristic period-dmgptoute toward
chaos as a function of a material parameter (spring stéjn@€sigenbaum1978.
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Finite differences

5.1 Introduction to the finite difference method

5.1.1 Finite differences and Taylor series expansions

We now turn to the solution of partial differential equaso(PDES), and the first method that
will be discussed is the method of finite differences (FD)e Holution of PDEs by means of
FD is based on approximating derivatives of continuoustions by a discretized version of the
derivative based on discrete points of the functions ofrege FD approximations can be derived
through the use of Taylor series expansions. Suppose weatfanetionf (x), which is continuous
and differentiable over the range of interest. Let’s alsuage we know the valug(Xp) and all the
derivatives ak = Xp. The forward Taylor-series expansion fbixy + h), away from the poinkg

by an amounh gives

0%f(x0) h®> 0% (xo) h3+ " f(xp) h"

af(XO) n+1
ox h+ ox2 2!+ 3 31 X" n!-I-O(h ) (5.1)

We can express the first derivative bby rearranging eq5(1)

0f(x0) _ flo+h)—f(0) 3f(0) h _Ff(x0) (5.2)
ox h o2 20 e 3T '

f(xo+h) = f(x0) +

If we now only compute the first term of this equation as an appnation, we can write a dis-
cretized version

of(x) fiya—fi

ox  h

where functiond = f(x;) are evaluated at discretely spacgwvith X1 = X + h, where the node
spacing, omesolution his assumed constant. Her@(h) indicates that the full solution would
require terms of ordenm, (h)?, and so on.O is called the truncation error, which means that if the
distanceh is made smaller and smaller, the (numerical approximagorgr decreases h. The
forward FD derivativeas expressed by ech.0) is therefore called first order accurate, and this
means that very smatlis required for an accurate solution.

+o(h) (5.3)
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We can also expand the Taylor series backward

0f(x), , 0°f(x0) h* 9°f(x) h°

In this case, the firshackward differencean be obtained by
of(x) fi—fig
. h + O(h). (5.5)

Proceeding in a similar fashion, we can derive higher oréeivdtives. Introducing the abbre-
viation
_of L, @

/ —_—
F= ox ox2 (5.6)
we can find, for example,
£/ —f
f = %jt()(h) (5.7)

firo—fiyas  fipa—fi

= —h - h__ 1 o(h) (5.8)
fiio—2fi 1+ fi

- h2'+ L+ 0(h) (5.9)

which is the first order accurate forward difference appration for second derivatives.
If we wish to improve on accuracy, we can proceed by takingdrgrder terms of the Taylor
expansion and using first order accurate estimates for tivatiees. For example,

f(x+h) —f(x) h

f’(x) _ ) _Ef//(x)+.,. (5.10)
_ fx+ hr)]— fx) 2 (f(X+ 2h) —2;2(X+h)+ f(x) n O(h)) +0(h?) or(5.11)
. —fi+2+;'r:]i+1—3fi + o). (5.12)

Alternatively, we can form the average of the first order aataiforward and backward schemes,
i.e.adding egs.%.3) and 6.5 and dividing by two. The result is theentral differencepproxima-
tion of the first derivative

= % +O(h?) (5.13)

and also second order accurate. Note that 8d.3( involves fewer function evaluations than
eq. 6.12, which is why eq. %.13 is preferred. Note also that both equations now requirevkno
edge off over three lateral grid points (three posténci), rather than two as was needed for first
order accuracy.

By adding egs.%.1) and 6.4) an approximation of the second derivative is obtained

_ fip—2fitfig

fi// h2

+0(h?). (5.14)
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A different way to derive the second derivative is by compgtihe first derivatives at+ 1/2 and
ati —1/2 and computing the second derivative by using the central difference of those two first
derivatives:

/ fi—i—l - fi

12T T (5.15)
1= f _hfi_l (5.16)
f/ —f/ fipa—fi  fi—fia

Similarly, we can derive higher order derivatives, and bigbrder accuracy (but only if is of
polynomial form). Both require more input values, a largensil. A general approach to forming
interpolations off andd"f /dx? can be found irFornberg (1996. Note that the highest order
derivative that usually occurs in geodynamics is theotder derivative.

5.1.2 Finite difference approximations

The following equations are common finite difference apprations of derivatives which are
here provided for reference. Central differences with sdamder accuracy are typically good
choices and highlighted in bold face.

Left-sided first derivative, first order

ou CUi—Uig

a_)(‘i—l/z ==+ o(h) (5.18)
Right-sided first derivative, first order

ou _ Uip1— Ui

a_x‘i+1/2 =~ h " o(h) (5.19)

Central first derivative, second order

@’ _ Ui —Uig
Ox li 2h
Central first derivative, fourth order

+ 0(h?) (5.20)

—Uiy2+8Ujt1—8Ui_1+ U2

ou 4
&‘i - . +o(h) (5.21)
Central second derivative, second order
0%U|  Uiy1—2Ui+Ui_1 2
—| = O(h 5.22
X2 ’i h? +0(h%) ( )
Central second derivative, fourth order
02u —Ujy2+ 16Uj+1 —30u; + 16Ui_1 — Ui_» 4
— | = O(h 5.23
X2 ‘i 12n? +0o(h%) ( )
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Central third derivative, second order

0% _ Uip2—2Ui1+20i1— U2

5= T +0(h?) (5.24)

Central third derivative, fourth order

+0(h% (5.25)

@‘ ~ —U43+8Uiy2 — 13041+ 1301 —8Ui—2+ U3
3l 8h3

Central fourth derivative, second order

0% | Uipo—4Ui1+6U —4Ui_1+Ui_p

3= i +0(h?) (5.26)
Note that derivatives with of the following form
0 ou
I (k(x)a—x) , (5.27)
wherek is a function of space, should be formed as follows
9 au k, 1 2Ui+l*Ui _ ki—l 2Ui*Ui—1
=~ <k(x)&> ‘i = /2 h - 2B 1 om?), (5.28)

to maintain the second order accuracy of the central diffszeapproach for second derivatives

(see above)

f'(x+h/2) — f'(x—h/2)
b :

If kis spatially varying, the following, common approximatsoare thereforeadequaté¢o main-

tain second order accuracy:

f// —

(5.29)

d du B ki+1ui+}‘rui _ k' Ui*}}{'i—l

= (k&) ‘i - - (5.30)
0 du B _ui+1—2ui+ui_1
= (k&> \i - > (5.31)

5.1.3 Finite difference example

Finite difference methods are perhaps best understoodamitexample. Consider the one-di-
mensional, transient.€. time-dependent) heat conduction equation without intesoarces

oT 0 [/, 0T
pcpa = 3 (k&) (5.32)
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wherep is density,cp heat capacityk thermal conductivityT temperaturex distance and time.
If the thermal conductivity, density and heat capacity avastant over the model domain, the
equation can be simplified to

oT 9°T
where K
K=— (5.34)
PCp

is the thermal diffusivity (a common value for rocksis= 10-® m?s~1). We are interested in the
temperature evolution versus timéx,t) which satisfies eq.5(33, given an initial temperature
distribution (Fig. 5.1A). An example would be the intrusion of a basaltic dike inleo@ountry
rocks. How long does it take to cool the dike to a certain tepee? What is the maximum
temperature that the country rock experiences?

The first step in the finite differences method is to constaugtid with points on which we
are interested in solving the equation (this is called éigzation, see Fig5.1B). The next step
is to replace the continuous derivatives of €83@ with their finite difference approximations.
The derivative of temperature versus til%{ecan be approximated with a forward finite difference
approximation as

O_T N -|-in+1_-|-in _ -|-in+1_-|-in _ Tinew_ -|-icurrent (5.35)

ot tn+l_¢n At At
heren represents the temperature at the current time step wheredsrepresents the new (fu-
ture) temperature. The subscriptefers to the location (Fig5.1B). Both n andi are integersn
varies from 1 tory (total number of time steps) andvaries from 1 tony (total number of grid
points inx-direction). The spatial derivative of e.83 is replaced by a central finite difference
approximationj.e.,

-|—_n _T_n Tn_Tn
i+1 i i i—1 -|-n 2-|-in+-|-_nl

T 0 (oT h h i+1 " i—
a2 " ax <&> ~ h = e (5-36)
Substituting eq.%.36 and 6.35 into eq. 6.33 gives

T 2T+ Ty
h2

1
TiI’H- _Tin .
At

(5.37)

The third and last step is a rearrangement of the discreéigadtion, so that all known quantities
(i.e.temperature at timm) are on the right hand side and the unknown quantities orefbdand
side (properties at+ 1). This results in:

TN, —2TN4+ TN
! '—1) (5.38)

1 1

Because the temperature at the current timestejs known, we can use ech.38 to compute the
new temperature without solving any additional equatioBsch a scheme is callegkplicit and
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was made possible by the choice to evaluate the temporabtiee with forward differences. We
know that this numerical scheme will converge to the exakitsm for small h andit because it
has been shown to be consistent - that its discretisatiacepsocan be reversed, through a Taylor
series expansion, to recover the governing partial difféaeequation - and because it is stable for
certain values ofit and h: any spontaneous perturbations in the solution (ssichuend-off error)
will either be bounded or will decay.

The last step is to specify the initial and the boundary cioonk. If for example the country
rock has a temperature of 3@ and the dike a total widtW = 5 m, with a magma temperature
of 1200°C, we can write as initial conditions:

T(x< -W/2,x>W/2,t=0) = 300 (5.39)
T(-W/2<x<W/2,t=0) = 1200 (5.40)

In addition we assume that the temperature far away from iteeagnter (atL/2|) remains at a
constant temperature. The boundary conditions are thus

T(x=-L/2t) = 300 (5.41)
T(x=L/2,t) = 300 (5.42)

The attached MATLAB code shows an example in which the gridiiglized, and a time loop
is performed. In the exercise, you will fill in the questionrkeaand obtain a working code that
solves eq.%.39.

5.1.4 Exercises

1. Open MATLAB and an editor and type the Matlab script in arpgniile; alternatively use
the template provided on the web if you need inspiration. eSe file under the name
heat1Dexplicit.m . If starting from the template, fill in the question marks d@hdn run
the file by typingheatl1Dexplicit in the MATLAB command window (make sure you're
in the correct directory). (Alternatively, type F5 to rumifn within the editor.)

2. Study the time evolution of the spatial solution using aalde y-axis that adjusts to the
peak temperature, and a fixed axis with raags([-L/2 L/2 0 Tmagma]) . Comment on
the nature of the solution. What parameter determines th&oeship between two spatial
solutions at different times?

Does the temperature of the country rock matter for the patfithe solution? What about
if there is a background gradient in temperature such tletthuntry rock temperature in-
creases from 300atx = —L/2 to 600 atx=L/2?

3. Vary the parameter®(g.use more grid points, a larger or smaller timestep). Comeae t
results for small dx and dt with those for larger dx and dt. Hoe/these solutions different?
Why? Notice also that if the timestep is increased beyond tioevalue, the numerical
method becomes unstable and does not converge - it growsutibounds and exhibits
non-physical features. Investigate which parameterststability, and find out what ratio
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Figure 5.1: A) Setup of the model considered here. A hot basaltic dike intrudes coolarttry rocks.
Only variations inx-direction are considered; properties in the other directions are asgarhectonstant.
The initial temperature distributioii (x,0) has a step-like perturbation, centered around the origin with
[-W/2;W/2] B) Finite difference discretization of the 1D heat equation. The finite diffee method
approximates the temperature at given grid points, with spdtifthe time-evolution is also computed at
given times with timesteft.

of these parameters delimits this scheme’s stability regldnis is called the CFL condition,
see von Neumann stability analysis af.chap 5 ofSpiegelman2004).

Limited stability and numerical aliasing/dissipation ame® major drawbacks of explicit fi-
nite difference codes such as the one presented here. Iregteveek, we will discuss
methods that do not have these limitations.

4. Record and plot the temperature evolution versus time &tante of 5 m from the dike-
country rock contact. What is the maximum temperature thatrgpuock experiences at this
location and when is it reached? Assume that the countrywaskcomposed of shales, and
that those shales were transformed to hornfels above a tatmpe of 600C. What is the
width of the metamorphic aureole?

5. Think about how one would write a non-dimensionalizedier of the temperature solver.

6. Bonus question: Derive a finite-difference approximatmmvariablek (and variableh al-
lowing for uneven spacing between grid points should youesird). Test the solution for
the case ok = 10 inside the dike, ankl= 3 in the country rock.

USC GEOL540 66 Numerical Geodynamics



CHAPTER 5. FINITE DIFFERENCES

Y%heat1Dexplicit.m

%

% Solves the 1D heat equation with an explicit finite differe nce scheme
clear

%Physical parameters
L

= 100; %  Length of modeled domain [m]
Tmagma =  1200; %  Temperature of magma [C]
Trock = 300; %  Temperature of country rock [C]
kappa = le-6; %  Thermal diffusivity of rock [m2/s]
w = 5 %  Width of dike [m]
day = 3600%24; %  # seconds per day
dt = 1*day; %  Timestep [s]

% Numerical parameters

nx = 201 %  Number of gridpoints in x-direction
nt = 500; %  Number of timesteps to compute
dx =  Linx-1); %  Spacing of grid

X -L/2:dx:Li2,%  Grid

% Setup initial temperature profile
= ones(size(x))*Trock;
T(find(abs(x)<=W/2)) = Tmagma;

time = 0
for n=1:nt % Timestep loop

% Compute new temperature

Tnew = zeros(1,nx);
for i=2:nx-1

Tnew() = T() + 27272
end

% Set boundary conditions
Tnew(1) = T()
Tnew(nx) = T(nx);

% Update temperature and time
T = Tnew;
time = time+dt;

% Plot solution

figure(1), clf

plot(x, Tnew);

xlabel('x [m])

ylabel('Temperature ['oC]’)

title(['Temperature evolution after ',num2str(time/day ), days’)

drawnow
end

Figure 5.2: MATLAB script to solve eq. $.33 (once the blanks indicated by the questions marks are filled
in...).

USC GEOL540 67 Numerical Geodynamics



CHAPTER 5. FINITE DIFFERENCES

5.2 Implicit FD schemes and boundary conditions

Reading
e Pressetal(1993, sec. 19.2
e Spiegelmarf2004), sec. 6.1-6.5

5.2.1 \Variable time derivatives — explicit vs. implicit

Last week we solved the transient (time-dependent) heattiegquin 1D. In the absence of heat
sources, the governing equation is
oT  0°T
— =K—— 5.43
ot ox2 (5.43)
if material parameters are homogeneous.
In explicitfinite difference schemes, the temperature at timel depends only on the already
known temperature at time The explicit finite difference discretization of e§.43 is
T T T 2T T
=K
At h? ’
using central differences for the spatial derivatives ¢supti indicating thex location in 1-D,
superscripts indicating the time). Ed.44) can be rearranged in the following manner (with all
guantities at timen+ 1 on the left and quantities at tinmon the right-hand-side)

TN, 2T 4 TN
1 1 1
T = TN 4 kat—+ h2| '

(5.44)

(5.45)

Since we knowT,?,, T" and ;" ;, we can computd™"*. This is schematically shown on Fig-
ure5.3a, and an algorithm based on €6.45, such as the one of last week’s problem set, is called
aforward time, centered space (FTOScause of the way it is computed.

The major advantage of explicit finite difference methodbkad they are relatively simple, only
one solution fofT needs to be stored, and the method is computationally fasiaich time step.

However, the main drawback is that stable solutions arammdxdaonly when

2
0< % <1 or At< S—K for givenh. (5.46)

If this condition is not satisfied, the solution becomes albl, starts to wildly oscillate, or “blow
up”. Press et al(1993 discuss how to derive stability bounds for different wavejths of pertur-
bations, but physically, the stability condition e§.46 means that the maximum time step needs
to be smaller than the time it takes for an anomaly to diffusess the grid (nodal) spaciry(cf.
diffusion time in sec4.3). The explicit solution, eq.545), is an example of aonditionally stable
method that only leads to well behaved solutions if a cotetlike eq. 6.46) is satisfied.

Note that eq.%.46) can only hold forkAt > 0; having a negative diffusivity, or using a time-
reversedit < 0, will invariably lead to blow up since small features willtgemphasized rather than
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boundary nodes boundary nodes boundary nodes
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Figure 5.3: A) Explicit finite difference discretization. B) Implicit finite difference distization. C)
Crank-Nicolson finite difference discretization.

smoothed out. This is an issue if one wishes to reconstrifastie-advective processes (such as
mantle convection), going from the present-day tempeedfieid back in time. We will revisit
an FTCS scheme similar to ec.44) for advection that involves single derivatives in spaderla
Unlike eq. 6.44), the FTCS scheme for advectionalkvaysunstable. Not a good idea.

Even if the FTCS for diffusion can be made stable, the stgslindition leads to numerical
convenience issues. Given that we are typically interestsgatial features with wavelength,
within the solution that are much larger thepA > h, because we want to resolve the solution
features at least with a few nodes, the explicit scheme,%44( will require (A/h)? > 1 steps
per relevant time scale for the evolution)ofeatures, which is usually prohibitive.

An alternative approach is amplicit finite difference scheme, where the spatial derivatives
0°T /0x? are evaluated (at least partially) at the new time step. Thplest implicit discretization
ofeq. 6.43 is

T T2 T

" h2 ’

afully implicit scheme where the time derivative is taken backward (Fi§it®). Eq. 6.47) can
be rearranged so that unknown terms are on the left and kremwistare on the right

—sTH + 1+ 29T st =T (5.48)

(5.47)

wheres = kAt /h?. Note that in this case we no longer have an explicit reIaﬁm’xmforTi'fil,'I'ir”rl
andT,7;*. Instead, we have to solve a linear system of equations hwidiscussed further below.

Note: If the spatial derivative is of type

0 d
EY <k(X)aXT> (5.49)
as for the case of the laterally varying conductivity in the explicit FD exertisthe heat equation, then
—rk T (L (K k) T = g T =T (5.50)

has to be used instead of €.48). Here,r = At/h? andk; andk; are the material parameters to the “left”
(Xi—1/2) and “right” (X 1/2), respectively.
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The main advantage of implicit methods is that there are aicéions on the time step, the
fully implicit scheme isunconditionally stable This does not mean that it is accurate. Taking
large time steps may result in an inaccurate solution fotufea with small spatial scales. For
any application, it is therefore always a good idea to chhekr¢sults by decreasing the time step
until the solution does not change anymore (this is calledr@ergence check), and to ensure the
method can deal with small and large scale features robaisthe same time.

Eq. 6.49 is also suited to understand the overall behavior of anioitphethod for large time
steps. If we lefAt — o, and then divide eq5(48 by —s, we get

Ti1— 2T +Ti1=0, (5.51)
which is a central difference approximation of the steadyessolution of eq.5.43),

T
X2

Therefore, the fully implicit scheme will always yield thigit equilibrium solution but may not
capture small scale, transient features.

It turns out that the fully implicit method described by €§.4(7) is second order accurate in
space but only first order accurate in time, O(h?,At). It is possible to write down a scheme
which is second order accurate both in time and in spaee@(h?,At?)). One such scheme is
the Crank-Nicolson scheme (see exercises, %@C), which is unconditionally stable. Note the
analogy with the previous derivation of spatial derivasiveorward or backward differences were
only first order accurate, while the central difference apph achieved second order accuracy
O(h?). The Crank-Nicolson method is the time analog of centraligpdifferences. However, any
partially implicit method is more tricky to compute as we dée infer the future solution at time
n+ 1 by inversion of a system of linear equations based on thevirsmlution at timen. This is
discussed next.

~0. (5.52)

5.2.2 Solution of example problem
Boundary conditions — Neumann and Dirichlet

We solve the transient heat equation, €g48, on the domain-L/2 < x < L/2 subject to the
following boundary conditions for fixed temperature

T(x=-L/2}t) = Ten (5.53)
T(X:L/Z,t) = Tright

with the initial condition

T(X< -W/2,x>W/2,t=0) = 300 (5.54)
T(-W/2<x<W/2,t=0) = 1200Q (5.55)

where we have again assumed a hot dike intrusion-fdf/2 < x <W/2.
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Boundary conditions (BCs) for PDEs that specify values of tHet®m function (hererT) to
be constant, such as e§.%3, are calledirichlet boundary conditionsWe can also choose to
specify the gradient of the solution functioe,g. 0T /0x (Neumann boundary conditipn This
gradient boundary condition corresponds to heat flux fohibegt equation and we might choose,
e.g, zero flux in and out of the domain (isolated BCs):

oT

S X=-L/21) =0 (5.56)
oT
S X=L/2t = o

Solving an implicit finite difference scheme

As usual, the first step is to discretize the spatial domath vy finite difference points. The
implicit finite difference discretization of the tempereglequation within the medium where we
wish to obtain the solution is eg5.@48. Starting with fixed temperature BCs (e.%3), the
boundary condition on the left boundary gives

T1 = Tiett (5.57)

and the one on the right
Tnx — Tr|ght. (5.58)

Egs. 6.49, (5.57), and 6.58 can be written in matrix form as
Ac =rhs. (5.59)

For a six-node grid, for example, the coefficient makiis

1 0 0 0 0 0
—s (1+2s) —-S 0 0 0
1 0 -s (1429 —S 0 0
A= 0 0 -s  (1+42s) -—s 0o |’ (5.60)
0 0 0 -s  (1+42s) —s
0 0 0 0 0 1
the unknown temperature vectors
Tln+l
-|-2n+1
-|-n+1
C= T3n+1 , (561)
4
-|-5n+1
-|-6n+1
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and the known right-hand-side vectbis is

(5.62)

Note that matrixA will have a unity entry on the diagonal and zero else for eamttenwhere
Dirichlet (fixed temperature) boundary conditions app8g slerivation below and eg%.74) and
(5.79 for how to implement Neumann boundary conditions.

Matrix A also has an overall peculiar form because most entries®ffidlgonal are zero. This
“sparseness” can be exploited by specialized linear aégehrtines, both in terms of storage and
speed. By avoiding computations involving zero entries efrttatrix, much larger problems can be
handled than would be possible if we were to store the fulkxaln particular, the fully implicit
FD scheme leads to a “tridiagonal” system of linear equattbat can be solved efficiently by LU
decomposition using the Thomas algoritheny(Press et al.1993 sec. 2.4).

Matlab implementation

Within Matlab, we declare matriA to be sparse by initializing it with thgparse function. This
will ensure a computationally efficient internal treatmesithin Matlab. (Later, we will take re-
course to @parse2 function that improves on built-isparse .) Once the coefficient matri and
the right-hand-side vectohs have been constructed, MATLAB functions can be used to nbtai
the solutionc and you will not have to worry about choosing a proper maitixer for now.

First, however, we have to construct the matrices and vecidre coefficient matri can be
constructed with a simple loop:

A = sparse(nx,nx);

for i=2:nx-1
A(i,i-1) = -s;
Alii ) = (1+2%);
A(i,i+l) = -s;
end

and the boundary conditions are set by:

Al 1) =1,
A(nx,nx) = 1;

(Exercise: Improve on the loop formulation fArassembly by using Matlab vector functionality.)
Once the coefficient matrix has been constructed, its strecian be visualized with the command

>>spy(A)
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(Try it, for example by putting a “break-point” into the Mall code below after assembly.)
The right-hand-side vectohs can be constructed with

rhs = zeros(nx,1);
rhs(2:nx-1) = Told(2:nx-1);
rhs(1) = Tleft; rhs(nx) = Tright;

The only thing that remains to be done is to solve the systeegoétions and find. MATLAB
does this with

c = A\rhs;

The vectorc is now filled with new temperaturég™ 1, and we can go to the next time step. Note
that, for constaniit, Kk, andh, the matrixA does not change with time. Therefore we have to form
it only once in the program, which speeds up the code significaOnly the vectorshs andc
need to be recomputed. (Note: Having a constant matrix helps for large systems because
operations such ag = A\rhs can then be optimized further by storiAgn a special form.)

5.2.3 Exercises

1. Save the scripteatlDexplicit.m from last week aseat1Dimplicit.m . Program the
implicit finite difference scheme explained above. Compleaésults with results from last
week’s explicit code.

2. Time-dependent, analytical solutions for the heat eguaxists. For example, if the initial
temperature distribution (initial condition, IC) is

T(xt=0)= TmaxeXp(— (;—;)z> (5.63)

whereTmax is the maximum amplitude of the temperature perturbatioxn-at0 ando its
half-width of the perturbance (use< L, for exampleo = W). The solution is then

Tmax ( —x2 )
TXt) = ——exp| ——— 5.64
Got) 1+ 4tk /02 P\ o2+ 4t (5.64)

(for T = 0 BCs at infinity). Program the analytical solution and compaes analytical
solution with the numerical solution with the same initi@ndition. Compare results of
the implicit and FTCS scheme used last week to the analytadatisn near the instability
region of FTCS,

KAt 1

S=-— < =
e S 2

(5.65)

Note: Eq. (5.64) can be derived usingsimilarity variable X = x/x; with x¢ [ \/kt. Looks
familiar?
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3. A steady-state temperature profile is obtained if the tiexvativedT /dt in the heat equa-
tion (eq.5.43 is zero. There are two ways to do this.

3.1 Wait until the temperature does not change anymore.

3.2 Write down a finite difference discretizationd3fT /0x* = 0 and solve it. (See the limit
case consideration above.)

Employ both methods to compute steady-state temperataréigef; = 100" and Tyight =
1000. Derive the analytical solution and compare your numerscdiitions’ accuracies.
Use the implicit method for part (a), and think about differboundary conditions, and the
case with heat production.

4. Apply no flux boundary conditions &t = L/2 and solve the dike intrusion problem in a
fully implicit scheme. Eqgs.X.74) and 6.75 need to replace the first and last columns of
your A matrix.

5. Derive and program the Crank-Nicolson methcfdKigure5.3C). This “best of both worlds”
method is obtained by computing the average of the fully ioit@nd fully explicit schemes:

(5.66)

1 1 1
T T k(2T 4TI + (T - 2T+ )
A2 h? '

This scheme should generally yield the best performancarpdiffusion problem, it is sec-
ond order time and space accurate, because the averagultyaXplicit and fully implicit
methods to obtain the time derivative corresponds to etialy#he derivative centered on
n+1/2. Such centered evaluation also lead to second order agciarethe spatial deriva-
tives. Compare the accuracy of the Crank-Nicolson schemethatiof the FTCS and fully
implicit schemes for the cases explored in the two previooblpms, and for ideal values
of dt and dx and for large values of dt that are near the ingiakegion of FTCS.

Hint: Proceed by writing out eq5(66) and sorting terms into those that depend on the
solution at time step+ 1 and those at time step as for eq. $.49.

6. Bonus question: Write a code for the thermal equation withalsée thermal conductivitk:
pcpdt = 2 <k%—l) Assume that the grid spacifmis constant. For extra bonus, allow for
variable grid spacing and variable conductivity.

5.2.4 Derivation of flux boundary conditions (fictitious boundary points)

A Neumann boundary condition can be expressed as

aT(x=0,t)
T - C]_ (567)
oT(x=L,t) .

ox G
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Left boundary Right boundary
<A ; A> e Grid point
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? —Ax—¥ !
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Figure 5.4: Discretization of the numerical domain with fictitious boundary points, thatrapayed to set
flux boundary conditions.

These conditions can be implemented with a forward or a badk®D expression. However,
this is not preferred since such finite difference approxioms are only first order accurate in
space (see last section). A better way to incorporate a flundbary conditions is therefore to use
a central finite difference approximation, which is giveni(a 1) by

To—To
=c
2h 1

(5.68)

and ati = ny by

Tnx+l - Tnxfl o

The problem is, of course, that the expressions above iayaints that are not part of the original
numerical grid (0”” andTn'lill). These points are calldettitious boundary point§Figure5.4).

A way around this can be found by noting that the equationHercenter nodes is given by

Ll R A M iy
A =K 2 . (5.70)

Writing this expression for the first node gives

Tll’l+1 _ T]_n _ KTZI’H—]. _ 2Tll’l+l + T0n+l (5 71)
At h? ' '

An explicit expression follJ"™" lis obtained from eq.5 69
Tt =T~ 2hey, (5.72)

i.e.we are simply extrapolating froif» to Tp with the slope given byg;. Substituting into eq.5.71)
yields
-I-n+1_-|-n 2-|-n+1_2-|-n+1_2hc
1 1 _g22 1 1 (5.73)
At h?
To apply this formulation in a fully explicit scheme, we cayaa rearrange terms to bring known

guantities on the right-hand-side:

(1429 T — 25T = T 2shg. (5.74)
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On the other end of the domain (verify!)
— 25T + (1429 Tt =T, + 2she. (5.75)

These equations now only involves grid points that are ganeocomputational grid, and eq$.74)
and 6.75 can be incorporated into the matAxand right-hand-sidehs (compare with eq.5.49).
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5.3 Non-linearities with FD methods

So far, we considered linear partial differential equatiomhere the coefficients in the equations
are either constant or only spatially variable, but are jp@helent of time or the solution itself. If
the coefficients are dependent on the solution, a nonlinedlgm results.

There are a number of ways to solve such nonlinear problers.e@siest, rough and ready
way, which works in many cases, is to replace the nonlinedt Bp a linear one, guess initial
values for the solution and the parameters that depend @mdk,then perform iterations until
the solution convergedP(card iterations). Whether this method will converge will depend o
the quality of the initial guess, which becomes harder winennon-linearities are strong. More
sophisticated methods exist; the most important of whidinéarization of the nonlinear terms and
solution of the (more complicated) PDE.§. Newton-Rhapsadterations). This method is more
robust and converges quadratically. It is, however, mdifecdit to implement and will therefore
not be discussed here.

5.3.1 Example

We consider a case of fluid flow in a porous media (governed é¥trcy equation) whose diffu-
sivity K is a function of the fluid pressure (high fluid pressure insesgpermeabilityp T— K 1).
In a 1-D, vertical £) column the governing equation shall be

oP 0 oP

whereP is the fluid pressure, and P) the hydraulic diffusivity. The equation is nonlinear besau
the diffusivity can be written as a function of the fluid prexsesP, which is related to the effect of
dilation and cracking under enhanced fluid pressure.

To solve eq.%.76), we need a constitutive law, and we assume that the hydrdifflisivity is
given by

K(P) = Ko+ cP™ (5.77)

wherek is the background diffusivity, andlandm (semi-empirical) constants.
We will use a fully implicit scheme, so that the discretipatis done in analogy (second order
accurate second spatial derivative) to the implicit 1-Dritined diffusion problem:

n+1 n+1 n+1 n+1

1 nt1 R —A o onp1 AT-RTY

P —P" Kigp— h KiZi/2~h (5.78)
At h '

where the material parameters are evaluated in betweers fodexample by computing an aver-
age

Kin+1 + KnJrl

n+1 E= (5.79)

Kit1p= 5

USC GEOL540 77 Numerical Geodynamics



CHAPTER 5. FINITE DIFFERENCES

(If diffusivity were merely heterogeneous (such as in trevmus explicit heat equation example),
but not dependent on the solution itself, we could use a e’ grid wher& would be specified
at nodes located in between the locations witi®to be computed. )

The implicit equations can again be solved in matrix form as

AP = rhs (5.80)

for P"1. The problem, however, is thatdepends o™, Therefore we have to perform iter-
ations for the truée®™1 and recompute\ at each time step before advancing time. The general
recipe is

1. Use the pressui@' to compute the diffusivities{‘Ill/Z using eqs.%.77) and 6.79.
. Determine the coefficients W using the estimated diffusivities.
. Solve the system of equations to find the new presBliré.

2
3
4. Use this new pressure estimate to recalculate diffiss/énd the coefficients iA.
5

. Return to step 2 and continue until the pres$yta stops changing, which indicates that the
solution has converged. Use as an indication of convergeaecillowing error estimate:

maxabgP" — Pt-1))
max abgPt))

error = (5.81)

If convergence is reached.grelativeerror < 10~%), continue to the next time step.

Exercise

e Write a program that solves the equations described abovheoddmainz € [0; 1] from
t =0tot =0.2. Assume that we have zero flux boundary conditidesgradientdP/dz= 0
on top and bottom). Use non-dimensional parameter vatges 0.05,c =1, m= 2 and
time-step 0.005. The initial pressure is to be unity witfdrt; 0.6] and zero else. At each
time step, compare the nonlinear solution to the linear ob&ined by setting = 0, to
visualize the effect of the non-linear terms.
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Figure 5.5: Finite difference discretization in 2D

5.4 Two-dimensional heat equation

We now revisit the transient heat equation, this time withrses/sinks, as an example for two-
dimensional FD problem. In 20, z} space), we can write

oT 0 [/, 0T 0 [, 0T

where,p is density,cp heat capacityk thermal conductivity an@ radiogenic heat production.
If the thermal conductivity is constant, we can rewrite

6T_K(62T 62T) Q

a = ae oz ) oy (5.83)

5.4.1 Explicit method

The simplest way to discretize ed.83 on a domainge.g.a box with widthL and heighH, is to
employ an FTCS, explicit method like in 1-D

n+1 n n n n n n n n
T =0 _Ti’j:K(T 2Tyl _2Ti’1+T“17")+ U (5.84)

i+l i+1,]
At Ax? AZ? pCp

There are now two indices for spacegnd j for z andx;j, respectively (Figuré.5). Rearranging

gives

Q-”-At
1 N
T =T+ s (T — 2T+ T 1)+ (T — 2T + Tl ) + oc, (5.85)
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where " "
K K
=1g and s= . (5.86)
Boundary conditions can be set the usual way. A constantgiidai) temperature on the left-
hand side of the domain (qt= 1), for example, is given by

Ti,j=1 = Tiert foralli. (5.87)

A constant flux (Neumann BC) on the same boundafy,gt= 1} is set through fictitious boundary
points

oT
& =C (588)
Ti2—To
2AX = Cy,

Tio=Ti2—2AXq,

which can then be plugged into €§.85 so that forj = 1, for example,

Q" At
Ti,nl+1 = Tn+s(2N% - 2T +4xar)) +5 (a1 — 2+ T q) + [;(1: - (5.89)
p

The implementation of this approach is straightforward asan be represented as a matrix with
Matlab, to be initialized, for example, fox, andny rows and columns, respectively, as

T = zeros(nz,nx); (5.90)

and then accessed &§,)) for Ti ;. The major disadvantage of fully explicit schemes is, of

course, that they are only stable if
2k At

—— . 5.91
min(Ax2,Az2) — (5-91)

5.4.2 Fully implicit method

If we employ a fully implicit, unconditionally stable disetization scheme as for the 1D exercise,
eg. 6.83 can be written as

-I-inj—i-l_-l-inj (T_thl 2Tn+1+T|njt11 Tn+1 2Tn+1_|_-|-anilj> n
2 =K — + =+

L+l 2 i+1j  Tij i
. 5.92
At Ax? AZ? Cp (5.92)

Rearranging terms with—+ 1 on the left and terms with on the right hand side gives
n

— T, STV + (14254 25) T — 5T E — TN = T + FI;(J:p .

(5.93)

As in the 1D case, we have to write these equations in a maisixd a vectorhs (and use Matlab
c = A\rhs to solve forT™1). From a practical point of view, this is a bit more complathan
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n 8 30 1 2 3 4 5
2 3 4 5 6 7 8
15 16 17 18 19 0 1

10 11 12 13 14

Figure 5.6: Numbering scheme for a 2D grid witly = 7 andn, = 5.

in the 1D case, since we have to deal with “book-keeping’d@sgie. the mapping off; j to the
entries of a temperature vecflk) (as opposed to the more intuitive matfij)  we could use
for the explicit scheme).

If a 2D temperature field is to be solved for with an equivalettorT, the nodes have to be
numbered continuously, for example as in Fighir@ The derivative versus-direction is there.g.

0°T 1
¥ |j=3j=4= N (Ti9—2T1g+T17), (5.94)

and the derivative versusdirection is given by

0°T 1

ﬁ|j:3,i:4 =72 (Tos—2T1g+T1a). (5.95)
If nk are the number of grid points idirection andh, the number of points iz-direction, we can
write egs. 5.94) and £.95 in a more general way as:

0°T 1
22T A (Ti—nner 41 = 2Ti-nynerj + Ti-2netj—1) (5.96)
0T 1
@h,j = A2 (Tineri = 2Ti— 2yt j + Ti-2)ner ) - (5.97)
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In matrix format this gives something likef(eq.5.93

10 ... O 0 0 0 0 0 0 O ... 0O
01.. O 0 0 0 0 0 0 0 00

A 00 -S ... =S (1425+2s;) —S ... =5, 0 0O
100 0 -s ... —Sx (1428+2s) - ... —% 00
0O00.. O 0 0 0 0 0 0 O ... 10
0O00.. O 0 0 0 0 0 0 O ... 01
(5.98)

Note that we now have 5 diagonals filled with non-zero entagespposed to 3 diagonals in the 1D
case. The solution vectars given by

n+1
T =T
n+1
THl-Ty,

T

C= n+(l

(i—L)n+j+1 — Tij1

n+1 _ T .
i—1)n+j TI’J (599)

n+1
Tnxnz—l - Tnz:nx—l

n+1 _
Tn)(nz - TﬂZynX

and the load (right hand side) vector is given Ry=£ 0 for simplicity)

Tbottom
Tbottom

TN . .
rhs = Tn<'—1>”x+1 . (5.100)
(i—1)ny+j+1

Ttop
Tiop

5.4.3 Other methods

The fully implicit method discussed above works fine, but mydirst order accurate in time
(sec.5.2). A simple modification is to employ a Crank-Nicolson timepstiscretization which is

second order accurate in time. In practice, this often do¢smake a big difference, but Crank-
Nicolson is preferred and does not cost much in terms of mahdit programming, so you may
consider using it for diffusion-type equations.
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A different, and more serious, issue is the fact that the absblving c = A\rhs is a strong
function of the size oA. This size depends on the number of grid points-ifny) andz-direction
(ny). For a 2D problem wittny x n; internal points,(ny x nz)? x (ny x Nz)? equations have to be
solved at every time step. This quickly fills the computer rmgnfespecially if going to 3D cases).

For the special case of the temperature equation, difféeehniques have therefore been de-
veloped. One such technique, is thkernating direction implicit(ADI) method. It basically
consists of solving the 2D equations half-explicit and faplicit along 1D profiles (what you do
is the following: (1) discretize the heat equation implicin the x-direction and explicit in the
z-direction. (2) solve it for tim&+1/2, and (3) repeat the same but with an implicit discretizatio
in the z-direction). Compared to the other methods, ADI i$. f&sowever, ADI-methods only
work if the governing equations have time-derivatives, anfbrtunately this is often not the case
in geodynamics. In the exercises, we therefore focus orutheifnplicit formulation. If, however,
you have to write a thermal solver at some point, you may gtyoronsider to use the ADI method
(which is still very fast in 3D).

5.4.4 Exercises

In the first two exercises you are to program the diffusionagign in 2D both with an explicit and

an implicit discretization scheme. The problem to be cagr&d is that of the thermal structure of
a lithosphere of 100 km thickness, with an initial linearrthal gradient of 13 K/km. Suddenly
a plume withT = 1500 C impinges at the bottom of the lithosphere. What happen wi¢h t
thermal structure of the lithosphere? A related (stru¢tgealogy) problem is that of the cooling
of batholiths (like the ones in the Sierra Nevada).

1. Fill in the question marks in the scripgat2Dexplicit.m (Figure5.7), by programming
the explicit finite difference scheme. Employ zero flux boanydconditions%—l =0 on the
left and on the right-side of the domain (outside the top aoition edges), and constant
temperature conditions on the top and bottom. Ignore tleetsfof radioactive heat.

2. Finish the codéeat2Dimplicit.m (Figure5.8), by programming the implicit finite differ-
ence approximation of the 2D temperature equation.

3. A simple (time-dependent) analytical solution for thenperature equation exists for the
case that the initial temperature distribution is

(5.101)

2
T(%,zt = 0) = Tmax€Xp [_(X—%}

o2

whereTnaxis the maximum amplitude of the temperature perturbatiqx,a = (0,0) and
o its half-width. The solution is than

(5.102)

Tmax
T(xzt)=— _exp|— =/
(X,Z, ) expl 0'2—|—4tK

—(x2+22)
144tk /02 }
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Program the analytical solution and compare it with the iek@nd fully implicit numerical
solutions with the same initial conditions at each time st€pmment on the accuracy of
both methods for different values of dt.

4. Bonus question 1: Add the effects of radioactive heat texipéicit/implicit equations above.
UseTurcotte and Schube(2002 or Google to find typical values &, p,cp for rocks.

5. Bonus question 2: Write a code for the thermal equation vatiable thermal conductivity
k. Assume that the grid spacidix is constant. This type of code is not only relevant for
thermal problems, but also for problems like (1) hydro-ggatal problems (Darcy flow,
e.g.how far did the chemical waste go into the aquifer?), (2) flmovements through the
crust and through fault zones (which is related to the aveatf ore deposits), (3) magma
migration through the mantle, (4) geochemistry and minegattions at grain-boundary
scale, (5) aftershocks and fluids.
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% Solves the 2D heat equation with an explicit finite differe

clear

%Physical parameters

L = 150e3; %  Width of lithosphere [m]

H = 100e3; %  Height of lithosphere  [m]

Thot = 1300; %  Temperature of bottom lithosphere [C]
Tsurf = 0; %  Temperature of country rock [C]
Tplume = 1500; %  Temperature of plume [C]
kappa = le-6; %  Thermal diffusivity of rock [m2/s]
Wplume = 25e3; %  Width of plume [m]
day = 3600%24; % # seconds per day

year = 365.25*day; % # seconds per year

% Numerical parameters

nx = 101 %  # gridpoints in x-direction

nz = 51 %  # gridpoints in z-direction

nt = 500; %  Number of timesteps to compute

dx = LAnx-1); %  Spacing of grid in x-direction

dz Hi(nz-1); %  Spacing of grid in z-direction
[x2d,z2d] = meshgrid(-L/2:dx:L/2, -H:dz:0); % create grid
% Compute stable timestep

dt = min([dx,dz])"2/kappa/4;

% Setup initial linear temperature profile

T = abs(z2d./H)*Thot;

% Imping plume beneath lithosphere

ind = find(abs(x2d(1,))) <= Wplume/2);
T(Lind) = Tplume;

time = 0

for n=1:nt

% Compute new temperature
Tnew = zeros(nz,nx);
sx = kappa*dt/dx’2;
sz = kappa*di/dz'2;

for j=2:nx-1
for i=2:nz-1
Tnew(ij) = 2?77,
end
end
% Set boundary conditions
Tnew(l,;) = T . )
Tnew(nz,) = 2
for i=2:nz-1
Tnew(j,1) = ?
Tnew(i,nx) = ?
end
T = Tnew;
time = time+dt;

% Plot solution every 50 timesteps

if (mod(n,50)==0)
figure(1), clf
peolor(x2d/1e3,z2d/1e3,Tnew); shading interp, colorbar
hold on
contour(x2d/1e3,z2d/1e3,Tnew,[100:100:1500],'k’);
xlabel(x [km])
ylabel('z [km])
zlabel('Temperature ["0C])
title(['Temperature evolution after ’,num2str(time/yea
drawnow

end

end

nce scheme

1/1e6), Myrs’)

Figure 5.7: MATLAB script heat2Dexplicit.m to solve the 2D heat equation.
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% Solves the 2D heat equation with an implicit finite differe

clear

%Physical parameters

L = 150e3; %  Width of lithosphere [m]

H = 100e3; %  Height of lithosphere  [m]

Thot = 1300; %  Temperature of bottom lithosphere [C]
Tsurf = 0; %  Temperature of country rock [C]
Tplume = 1500; %  Temperature of plume [C]
kappa = le-6; %  Thermal diffusivity of rock [m2/s]
Wplume = 25e3; %  Width of plume [m]
day = 3600%24; %  # seconds per day

year = 365.25*day; %  # seconds per year

dt = 100e6*year; % timestep

% Numerical parameters

nx = 51 %  # gridpoints in x-direction

nz = 51 %  # gridpoints in z-direction

nt = 100; %  Number of timesteps to compute

dx =  LAnx-1); %  Spacing of grid in x-direction

dz = Hinz-1); %  Spacing of grid in z-direction

[x2d,z2d] = meshgrid(-L/2:dx:L/2, -H:dz:0); % create grid
% Setup initial linear temperature profile

T = abs(z2d./H)*Thot;
% Imping plume beneath lithosphere
ind = find(abs(x2d(1,))) <= Wplume/2);

T(Lind) = Tplume;
% Setup numbering
num = 1
for i=l:nz
for j=1:nx
Number(i,j) = num;
num = num+1;

end
end
% Construct the A matrix
A = sparse(nx*nz,nx*nz);
SX = kappa*dt/dx2;
sz = kappa*dt/dz2;
for i = 2:nz-1
for j = 2:nx-1
i = Number(i,j);
A( i, Number(i+1j )) = 2%
A( i, Number(i j+1)) = ?2%
??
end
end
% Set lower and upper BC
for j = 1inx
??
end
% Set left and right BC
for i = 1inz
?
end
time = 0
for n=1:nt
% Compute rhs
ths = zeros(nx*nz,1);
for i = 1inz
for j = 1inx
i = Number(i,j);
2?
end
end
% Compute solution vector
Tnew_vector =  Alrhs;
% Create 2D matrix from vector
Tnew = Tnew_vector(Number);
T = Tnew;
time = time+dt;
% Plot solution every 50 timesteps
if (mod(n,10)==0)
figure(1), clf
peolor(x2d/1e3,z2d/1e3,Tnew); shading interp, colorbar
hold on
contour(x2d/1e3,z2d/1e3,Tnew,[100:100:1500],'k’);
xlabel(x [km])
ylabel('z [km])
zlabel('Temperature ["0C])
title(['Temperature evolution after ’,num2str(time/yea
drawnow
end
end

nce scheme

1/1e6), Myrs’)

Figure 5.8: MATLAB script heat2Dimplicit.m to solve the 2D heat equation.
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5.5 Advection equations with FD
Reading

e Spiegelmarf2004), chap. 5

e Pressetal(1993, sec. 19.1

5.5.1 The diffusion-advection (energy) equation for temperature in corac-
tion

So far, we mainly focused on the diffusion equation in a nawimg domain. This is maybe
relevant for the case of a dike intrusion or for a lithospheinech remains undeformed. However,
more often, we want to consider problems where material soeing the time period under
consideration and takes temperature anomalies with it. ¥am@le is a plume rising through a
convecting mantle. The plume is hot and hence its densitgwiscompared to the colder mantle
around it. The hot material rises with a velocity that degenl the density anomaly and viscosity
(see Stokes velocity). If the numerical grid remains fixethiembackground, the hot temperatures
should be moved to different grid points at each time step Esgure5.9 for an illustration of this
effect).

More generally speaking, mantle convection is an exampéesystem where heat is transport-
ed by diffusion (temperature changes without moving maagiqularly important in the boundary
layers) and advection (temperature changes by transpamijndnt in the interior the domain).
How strongly these two effects are partitioned is indicajkdbally by the Rayleigh number, and
locally by the Peclet number (see s on scaling analysis).

Mathematically, the temperature equation gets an additimmm for advection in a Eulerian
(fixed grid) system. In 1-D and in the absence of heat southesjiffusion-advection equation
becomes (see continuum mechanics, 8&9.

oT oT 0 oT
orin2-D T  oT  aT\ [ dT\ o / oT

wherevy, v, are velocities irx-, respectivelyz-direction. Ifk is constant, the general equation can
be written as

T
%—t +v-OT = kO°T. (5.105)

Heat sources would lead to additional terms on the right tsaahel Since temperature variations
lead to buoyancy forces, the energy equation is coupledtivitStokes (momentum equilibrium)
equation from which velocities can be computed to close the system needed for a convection
algorithm. You can explore the coupling between energy aokeS solvers in your term project.
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Temperature
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Figure 5.9: Snapshots of a bottom heated thermal convection model with a Rayleigh-nafiibe 10° and
constant viscosity (no internal heating). Temperature is advected thiefiged (eulerian) grid (circles)
with a velocity (arrows) that is computed with a Stokes solver.

Mantle convection codes typically deal with advection okeeperature field assuming that
there is significant diffusion at the same tinke;> 0, and will produce non-physical artifacts in
cases that are advection-dominated. One example wouldebehiémical compositio@ is to be

treated akin tal,

%—(t: +v-0C = kc%C. (5.106)

Chemical diffusivities are for mantle purposes zetoz 0, and special tricks are required to use

field methods to solve

%—FV-DC:O (5.107)

(e.g.Lenardic and Kaulal1993, as discussed below. Often, one therefore uses tracedbas
“particle methods” wher€ is assigned to virtual particles that are then advected antl©ODE
approach (to be solved witk,g, Runge Kutta)

dC

at =0 and at =V (5.108)
wherex; is the location of tha-th tracer moving through the fluid. We will return to a hybrid
approach below, but see,g, Tackley and Kind2003 for a recent discussion of different tracer
approaches. A related method is based on marker chaigsvén Keken et al.1997), this works
well if we are mainly interested in tracking a single intedebetween different materials wi
andC,. For the latter problem, “level set” methods are also pramgi¢e.g. Suckale et a).201Q
Samuel and EvonyR010.

dXi
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5.5.2 Advection (transport equations)

We will return to the combined (“combo”) solution of bothfdi§ion and advection below, but for
now focus on the advection part. In the absence of diffusienK k = 0), the 1-D equations are

oT oT

S T Vg, =0 (5.109)
and oT oT oT

We will now evaluate some options on how to solve these eguusitivith a finite difference scheme
on afixed grid. Even though the equations appear simplegtite tricky to solve them accurately,
more so than for the diffusion problem. This is particulaHg case if there are large gradients in
the quantity that is to be advecteelg. OT. If not done carefully, one can easily end up with
strong numerical artifacts such as wiggles (oscillatotifaats) and numerical diffusion (artificial
smoothing of the solution).

FTCS method

In 1-D, the simplest way to discretize e§.109 is by employing a central difference scheme in
space, and go forward in time (another example of a forwiand;tcentral space, FTCS, scheme):

TirH—l_Tin Tlil i—1
_ = j———— 5.111
At ’ 20X ( )

wherevy; is thevy velocity at location.

Exercise 1 We will consider a 1-D problem, with constawt velocity in which an exponential
pulse of temperature is getting advected alongxthgis.

e Program the FTCS method in the code of FigbrEOand watch what happens. Change the
sign of the velocity. Change the time step and grid spacingampute the non-dimensional
parametefvy|At /Ax. When do unstable results occur? Put differently, can yousfiktdsmall
enough to avoid blow-up?

As you can see from the exercise, the FTCS method does not wavkls. . . In fact, it is a nice
example of a scheme that looks logical on paper, but look$eateceiving. The FTCS method is
unconditionally unstableblow up for anyAt, as can be shown byon Neumann stability analysis
(cf. chap 5 ofSpiegelman2004). The instability is related to the fact that this schemedpices
negative diffusion, which is numerically unstable.
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%

% FTCS advection schem
%

clear all

201;

40; % width of domain
-4; % velocity

1

nx
W

Vel
sigma
Ampl
nt

dt

2,

500; % number of timesteps
le-2; % timestep

dx Wi(nx-1);

X 0:dx:W;

% Initial Gaussian T-profile

Xc = 20;

T = Ampl*exp(-(x-xc)."2/sigma"2);
% Velocity

VX = ones(1,nx)*Vel;
abs(Vel)*dt/dx

cfac = dt/(2*dx);

% Central finite difference discretization
for itime=1:nt

% central fin. diff

for ix=2:nx-1

Tnew(ix) = ???

end

% BCs

Tnew(1) = 7

Tnew(nx) = 77

% Update Solution & time incremement

T = Tnew;

time = itimedt;

% Analytical solution for this case

T_anal = ?7?

figure(1),clf, plot(x,T,x,T_anal), ...
legend('Numerical’,’Analytical’)

xlabel('x’)

ylabel('temperature’)

drawnow
end

Figure 5.10: MATLAB script to be used with FTCS exercise 1.

Lax method

The Lax approach consists of replacing fiein the time-derivative of eq.5(111) with (T,", +
T.",)/2. The resulting equation is

T - (ML + T /2 T — Ty

= —Vyi !
At X 2AX

(5.112)

Exercise 2

e Program the Lax method by modifying the script of the lastreise. Try different veloc-
ities andAt settings and compute ti@ourant numbei, which is given by the following

equation:
VAt
o= 5.113
Ax ( )

Is the numerical scheme stable for all Courant numbers? Whheiphysical meaning of
a? What happens fax = 1 and why?

e Bonus questianimplement a generalized Galerkin-Lax-Wendroff methoidgishe follow-
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ing equation:
oz 0% .4 0 o2AX? 0
[ x—mm](-ﬁn —Tin)JFO‘AX&Tin—T&TinZO (5.114)
whereMy = {£,%,%} and spatial derivatives are discretized using second eetgral dif-
ferences:

1 2
6(1_ CZAXZ) (-I-I:l—-ﬁil . -I-Irl-ﬁil) + §(1+C2AX2)Tin+1

1 a o2Ax? 1 a o2Ax?

2
= [é— E‘FT}Tig_l—l—é(l—GzAXz)Tin-i— [6— E—FT}T.E]_

(5.115)

This formulation gives us much better accuracyAB(Ax?) by using a higher order dis-
cretization in both time and space. But what is its stabilityge in terms of Courant num-
ber? Notice the difference in terms of artificial diffusi@md oscillations with respect to the
simple Lax method.

As you saw from the exercise the Lax method does not blow upmid®s have a lot of numerical
diffusion fora # 1 (which is hard to attain for realistic problems \asill vary in space and time).
In fact, the Lax criterion stabilized the discretized adigt equation by adding some artificial
diffusion. So, it's an improvement but it's far from perfesince you may now lose the plumes of
Figure5.9 around mid-mantle purely due to numerical diffusion. Astloe case of the implicit
versus explicit solution of the diffusion equation, you Hes there are trade-offs between stability
and accuracy. There is no free lunch, and numerical modaiatyo a bit of an art.

The stability requirement

|V |At
a= <

1 5.116
AX — ( )

is called theCourant criterion(Figure5.11).

Streamline upwind scheme

A popular scheme is the so-called (streamline) upwind aggrdFigures.12a). Here, the spatial
finite difference scheme depends on the sign of the velocity:

A Y.V (5.117)

ST
e iF v <0

Th—T"., .
Tin+1_Tin_ y { i |_11|fVX,i>O
e — T WX

Note that we have replaced central with forward or backwanivdtives, depending on the flow
direction. The idea is that the flux into the local cellxawill only depend on the gradient of
temperature in the direction “upstream&. where the inflowing velocity is coming from.
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stable unstable

forn

xorj

(a) (b)

Figure 19.1.3. Courant condition for stability of a differencing scheme. The solution of a hyperbolic
problem at a point depends on information within some domain of dependency to the past, shown here
shaded. The differencing scheme (19.1.15) has its own domain of dependency determined by the choice
of points on one time slice (shown as connected solid dots) whose values are used in determining a new
point (shown connected by dashed lines). A differencing scheme is Courant stable if the differencing
domain of dependency is larger than that of the PDEs, as in (a), and unstable if the relationship is the
reverse, as in (b). For more complicated differencing schemes, the domain of dependency might not be
determined simply by the outermost points.

Figure 5.11: lllustration of the Courant criterion (frofaress et al.1993 chap 19.1).

Exercise 3

e Program the upwind scheme method. Try different velociggrthutions (not just constant)
and compute the Courant numbersis the numerical scheme stable for all Courant num-
bers?

The upwind scheme also suffers from numerical diffusiom, iars only first order accurate in
space. For some applications, particularly if there’s aldmsion, it might just be good enough
because the simple trick of doing FD forward or backward @set to the underlying physics of
transport than, say, FTCS. There are some mantle convedaasdhat use streamlined upwind
schemes.

So far, we employed explicit discretizations. You're prolyavondering whether implicit dis-
cretizations will save us again this time. Bad news: they atewell-suited for this type of problem
(try it and see). Implicit schemes behave like parabolitipladifferential equationsg.gthe diffu-
sion equation) in that a perturbation at node (j,n) will effdhe solution at all nodes at time level
n+1. With hyperbolic PDE'’s like the advection equation @ tlave equation, disturbances travel
at a finite speed (the speed of the material displacementydinabt affect all nodes at time level
n+1. So we have to come up with something else.
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(a) (b)
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Figure 5.12: lllustration of the upwind (a) and leapfrog (b) schemes (fi@mass et al.1993 chap 19.1).

Modified Crank-Nicolson

One approach to solving the advection equation is the puslyjantroduced Crank-Nicolson semi-
implicit scheme. Here we modify it slightly by introducingganeral mass operatbt, = {8,1—
20,0}.

T v T (T T
M =5 +2 20t

>} =0 (5.118)

Setting the mass operator &c= 0 gives us the previously seen Crank-Nicolson semi-implicit
finite difference discretization, while settidg= % gives us the finite element formulation. Below
is eq. 6.11§ written out withd = .

1 1 N 1 1 1 Nt
(6~ 2V — (=T + [L+ (v I T
1 1 A 1 1 1 M

[6+4( Ax )}1’,”1+(1—§)T”+[6—Z( AX)}TH—l

(5.119)

The finite element Crank-Nicolson advection scheme is stable < 1 and provides an im-
provement over previous schemes in that it is accurate A0, @&°). This allows us to reduce the
number of grid points to reach the same accuracy as the athengs presented, as longdss
kept small enough.
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Staggered leapfrog

The explicit discretizations discussed so far were secotier@ccurate in time, but only first order
in space. We can also come up with a scheme that is secondiotdee and space
T T T T
a0 T oA
called staggered leapfrodpecause of the way it's centered in shifted space-time (EiguL2).
The computational inconvenience in this scheme is thatitwe steps have to be storéd!* and
TN

(5.120)

Exercise 4

e Program the staggered leapfrog method (assume that atghérfie stepr"1 = T") and
the two formulations of the Crank-Nicolson method wath- 0 andd = %. Try with different
values of the Courant numberand compare the accuracy and stability of the three differen
methods. Also make the width of the Gaussian curve smaller.

The staggered leapfrog method works quite well regardia@thplitude and transport phase as
long asa is close to one. If, howeven, < 1 and the length scale of the to-be-transported quantity
is small compared to the number of grid poirgsg(we have a thin plume), numerical oscillations
again occur (those are due to the lack of communication twells, which can be remedied by
artificial diffusion). The conditions where leapfrog doest mork well are typically the case in
mantle convection simulationsf( Figure5.9). Onward ever, backward never.

Similarly, the Crank-Nicolson method works well fox< 0.1 anda < 0.1, and eliminates the
staggered problem. But what happensdaor 0.1? What about the finite element formulation?
What about computational time? Is Crank-Nicolson’s incrdaseuracy worth the extra work? Is
it well-suited for mantle convection problems?

MPDATA

This is a technique that is frequently applied in (older) tteaconvection codes. The idea is based
on Smolarkiewic1983 and represents an attempt to improve on the upwind schema€ding
some anti-diffusion, which requires iterative correctioihe results are pretty good, but MPDATA
is somewhat more complicated to implement. Moreover wkhgtite a restriction on the time step
(given by the Courant criterion), for details sgepiegelmarf2004).

Semi-Lagrangian approach

What we want is a scheme that is stable, has only small nunhéiffizsion and is not limited by
the Courant criterion. A contender is the semi-Lagrangiathot which is often used for climate
modeling. The method is related to tracer-based advecii@olving ODEs and has little to do
with the finite difference schemes we discussed so far. Simsescheme could be the one that is
most important for practical purposes we will go in more detahas few drawbacks, one being
that it is not necessarily flux conserving.
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Basic idea The basic idea of the semi-Lagrangian method is illustrateeigure5.13A and is
given by the following, simplified scheme. Instead of allogithe numerical scheme to transport
noise in from unknown regions, the semi-Lagrangian methses uransport by going back one
(e.g.Euler) step.

For each point atx; and timet,:

1. Assume that the future velocity(tn+1,%) atx; is known. Under the assumption that the
velocity at the old time step is close to the future velocity(t1,%) ~ Vx(tn,Xi)) and that
velocity does not vary spatiallys((th, X—1) = Vx(tn,X) ~ Wx(th,Xi+1)), Wwe can compute the
locationX where the particle came from B¢ = x; — Atvy(thr1,%).

2. Interpolate temperature from grid poits } to the locatiorX at timet,, T (t,, X). For exam-
ple, use cubic interpolation (in MATLAB use the commani@rpl(x,T, X, 'cubic’)
for interpolation, where is supposed to be the vector that holds {ké).
Note 1: Be careful with interpolation. For smooth functions, polynomial interpolatsaiy, of cubic
order, is often a good idea. However, at edges, or if the function iswite discontinuous, “ring-
ing”, i.e.large, wiggly excursions, can occur. Linear, or spline, interpolation neggreferred.
Note 2:Most of the Matlab interpolation functions will by default not extrapolate idetthe

[mMin(x;), maxx )]

range and returilaN (not a number). If extrapolation is desireextrap’ needs to be set as an
option when calling the ’interp1’ function.

3. Assume thaT (th+1,%) = T (th, X), i.e. temperature has been transported (along “character-
istics”) without any modificationd.g.due to diffusion).

This scheme assumes that no heat-sources were active theiagvection ol from T (t,, X)
to T(th+1,X%). If heat sources are preseantd are spatially variable, some extra care needs to be
taken GSpiegelman2004 sec. 5.6.1).

Exercise 5

e Program the semi-Lagrangian advection scheme illustratéigure5.13A. Is there a Courant
criterion for stability?

Some improvements The algorithm described in Figuie13A illustrates the basic idea of the
semi-Lagrangian scheme. However, it has two problemst iIEmssumes that velocity is spatially
constant (which is clearly not the case in mantle convediomlations). Second, it assumes that
velocity does not change between timandn+ 1. We can overcome both problems by using a
more accurate time stepping algorithm (see the ODE sectfongxample is an iterative mid-point
scheme which works as followsf( Figure5.138):

For each point

1. Use the velocityx(tny1,%) to compute the locatioX’ at timet,, 1/, (i.e. take half a time
step backward in time).
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true path

o
time

space

Figure 5.13: Basics of the semi-Lagrangian method. See text for explanation.

2. Find the velocity at the locatiod’ at half time stefn1/2. Assume that the velocity at the
half time step can be computed\agtn. 1/2,X) = VX(t””’Xi)ZJFVX(t”’X‘)
for the spatial interpolation of velocity(tp 1/, X’).

. Use linear interpolation

3. Go back to point 1, but use the veloo#t,, 1,2, X") instead ofi(tn+ 1, ) to move the point

Xi(th+1) backward in time. Repeat this process a number of tiragsq times). This gives
a fairly accurate centered velocity.

4. Compute the locatioX att, with the centered velocit = X — Atvx(tn,1/2,X’).
5. Use cubic interpolation to find the temperature at pXiass before.

Other ODE-motivated methods such as 4th order Runge Kuttalswgossible (but take a bit
more work). Note that the various velocity interpolatiordateration schemes add overhead that
is, however, typically made up for by not needing to obey thar@ot criterion.
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Exercise 6

e Program the semi-Lagrangian advection scheme with themhtmidpoint method as illus-
trated in Figure5.13B (cf. Spiegelman2004 p. 67). Some care has to be taken if pofnt
is outside of the computational domain, since MATLAB wiltuen NaNfor the velocity (or
temperature) of this point. If no extrapolation is desingsk the velocityy(tn1,X;) in this
case. A pseudo-code is given by
if isnan(Velocity)

Velocity = Vx(i)
end

2D advection example

The semi-Lagrangian method is likely a good, general adweetigorithm (except in the case of
pseudo spectral methods), so this is the one we will implémezD.
Assume that velocity is given by

Ww(X,z2) = z (5.121)
Vz(X,2) = —X (5.122)

Moreover, assume that the initial temperature distributioGaussian and given by

T(x,2) = 2exp< ((X+0621532+22)> (5.123)

with x € [~0.5,0.5), z€ [~0.5,0.5].

Exercise 7

e Program advection in 2D using the semi-Lagrangian advecaheme with the centered
midpoint method. Use the MATLAB routinieterp2  for interpolation and employ linear
interpolation for velocity and cubic interpolation for tparature. A MATLAB script that
will get you started is shown on Figufel4

5.5.3 Advection and diffusion: operator splitting

In geodynamics, we often want to solve the coupled advediffusion equation, which is given

by eq. 6.103 in 1-D and by eq.%.109 in 2-D. We can solve this pretty easily by taking the

equation apart and by computing the advection part separfaten the diffusion part. This is

called operator-splitting, and what is done in 1-D is, faau@ple: First solve the advection equation
Tl 9T

=0 (5.124)
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% semi_lagrangian_2D: 2D semi-lagrangian with center midp oint time stepping method
%
clear all
W = 40, % width of domain
sigma = .1;
Ampl = 2
nt = 500; % number of timesteps
dt = be-l;
% Initial grid and velocity
[xz] =  meshgrid(-0.5:.025:0.5,-0.5:.025:0.5);
nz = size(x,1);
nx = size(x,2);
% Initial gaussian T-profile
T = Ampl*exp(-((x+0.25)."2+z."2)/sigma"2);
% Velocity
VX =z
Vz = X
for itime=1:nt
vx_n = Vx; %  Velocity at time=n
vx_nl = Vx %  Velocity at time=n+1
% vx_nl 2 = ?7% %  Velocity at time=n+1/2
% Vz_n =77 %  Velocity at time=n
% Vz_nl =7?% %  Velocity at time=n+1
% Vz_nl2 = ??; %  Velocity at time=n+1/2
Tnew = zeros(size(T));
for ix=2:nx-1
for iz=2:nz-1
Vx_cen = Vx(iz,ix);
Vz_cen = Vz(iz,ix);
% for 2?
% X =?
% =7
%linear interpolation of velocity
% Vx_cen = interp2(x,z,?,?, ?, 'linear’);
% Vz_cen = interp2(x,z,?,?, ?, 'linear’);
if isnan(Vx_cen)
Vx_cen = Vx(iz,ix);
end
if isnan(Vz_cen)
Vz_cen = Vz(iz,ix);
end
% end
% X=7
% =72
% Interpolate temperature on X
% T_X = interp2(x,z,2,2,?, ‘cubic’);
if isnan(T_X)
T_X = T(iz,ix);
end
Tnew(iz,ix) = T_X;
end
end
Tnew(l,;) = T(1:);
Tnew(nx,) = T(nx,);
Tnew(,1) = T(,1);
Tnew(,nx) = T(,nx);
T = Tnew;
time = itime*dt;
figure(1),clf

peolor(x,z,T), shading interp, hold on, colorbar
contour(x,z,T,[.1:.1:2],k),
hold on, quiver(x,z,Vx,Vz,'w')
axis equal, axis tight
drawnow
pause
end

Figure 5.14: MATLAB script to be used with exercise 7.
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for example by using a semi-Lagrangian advection schemen $blve the diffusion equation

of o / oT
pcpﬁ = 3 (k&) +Q. (5.125)

For this, we assumed th&X is spatially constant; if not, one should consider to slighthprove
the advection scheme by introducing source terms. A gooé@rgémethod would be to com-
bine Crank-Nicolson for diffusion with a semi-Lagrangiatveo for advection $piegelma 2004
sec. 7.2), but we will try something simpler first:

Exercise 8

e Program diffusion-advection in 2D using the semi-Lagrangadvection scheme coupled
with an implicit 2D diffusion code (from last week’s exere)s Base your code on the script
of figure5.14
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Finite elements

6.1 Introduction to finite element methods
Reading

e Textbooks

— The recommended source for this, finite element past of tesds the nice and well-
priced textbook byHughes(2000. This book is in wide use in mantle convection
modeling and aspects of the codemMan (King et al, 1990 andCitcomS (Moresi
and Solomatav1995 Zhong et al. 2000 (both now maintained and developed by
CIG, geodynamics.org ) follow the approach and notation Biughes(2000.

— For additional reference, you might want to consider thesita comprehensive and
high-level treatment baathe(2007) which is held by the library.

— However, as before your lecture notes and the handouts aetrtebe sufficient.
e Hugheg(2000, chap. 1, secs. 1.1-1.15
e Bathe(2007), sec. 1.2

6.1.1 Philosophy of the finite element (FE) method

Consider a boundary value problem (and many physical prabiemsolid mechanics can be con-
verted into a boundary value problem) given on a “doma&ith a boundary”™ = 0Q such that
a solutionu(x) satisfies the PDE:

F(u(x)) = s(x) (6.1)
whereF is some differential operator arsth source term.

As boundary conditions, we can have

100
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_(r (u)=S
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Dirichlet (fixed value, “essential”)

Uoa =9 (6.2)
type constraints where the valuelofs given ondQ, and/or

Neumann (flux, “natural”)
nodiu=n-Ou=nh (6.3)
conditions, where we specify the derivatives.

(If the PDE is, for example, an elastic deformation problémenu would be displacements, and
Dirichlet conditions ofg = 0 correspond to “no-slip’.e. no deformation at the boundaries. Like-
wise,h =0 Neumann conditions would correspond to zero tractioresqérivative of displacement
times modulus are stresses), “free slip”. )

The FE analysis then proceeds by two steps:

1. Converting the governing PDE from the regular, “strongiqwhich we used for FD) to
the weak integral form (see below).

2. Discretizing the domaif into “elements” on which an approximate solution tois to be
obtained using simplified polynomials, so called “form ftians” or basis functions.

We will provide a highly abbreviated treatment, lacking angthematical rigor. Moreover,
we will omit the detailed discussion of different elemerpeg, or shape functions, as well as im-
plementation issues such as order of integration. Thosessare very important in practice, as
choices in shape functions and element type may strongdgtedblution robustness and accuracy.
However, we don’'t have time to delve into this (seg.Hughes2000. For a specific mantle con-
vection code pertaining to the commonly ugamhMan andCitcom , see als@hong et al(2007).

To contrast finite elements with finite difference methods,can summarize the main differ-
ences and how they affect usage:
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Finite Differences(FD) Finite Elements (FE)

e approximates the PDE e approximates the solution of the PDE

e mainly restricted to simple, rectangu- ¢ complex geometries fairly easily im-
lar domains plemented

e regional, or adaptive mesh refinement e regional mesh refinement easy, adap-
hard to implement tive refinement fairly straight forward

_ (problems with “smoothing”)
e simple implementation

_ e involved implementation
e special case of FE

6.1.2 A one —dimensional example

Consider

on the domain0, 1] wheres is given. Eq. 6.4) could be a 1-D steady-state heat equation, for
example, where

W # ~0. (6.5)

Mathematically, we require to be smooth for a solution farto exist. Additionally, we will
require

u(0) =g (Dirichlet) (6.6)
and
oxu(1l) =h (Neumann) (6.7)

boundary conditions (BC'’s), which closes the system for a teintgooundary value problem. This
formulation of the PDE with all original derivatives in pkcs called thestrong form Egs. 6.4)
and 6.6) can, of course, be solved analytically by integration. &ample, ifs= x such that

OxxU+X=0 (6.8)
then by integration
axu+%x2+c1:o (6.9)
and integrating again
u+(—13x3+clx+cz:0 (6.10)
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u(x) = —%xs'—clx—cz (6.11)
and use BC's@.6) & (6.7)
=Uu(0)=—-c2=g0; oxu(1) = —% —c1=h (6.12)
1 1
iu(x):—éx3+(h+§)x+g (6.13)

The analytical solutiong(13) will be used in the numerical problem set to test the appnaxe
solutions. For more complicated, realistic problems,dgjly no analytical solutions can be found
(which is why we do numerical analysis in the first place).

From the strong form, we will now move to a variation,“@reak form”. We require that

(a) thetrial solutionsof u, among all possible solutions satisfy the essential BC
ui0) =g (6.14)

and that the trial solutions are square integrable
1
/ (9yU)2dx < oo (6.15)
0

(b) the weighting functions, or variations,satisfyw(0) = 0, the homogeneous counterpart of

eq. 6.14.

We can then write (sloppily):

Oxxu+s=0 (6.16)
multiply by —w and integrate
—/Waxxu—/ws:o (6.17)
from the integration by parts rule
/ ab—ab| — / ba (6.18)
= /Olaxwaxu—axuw|(1) —/WS: 0 (6.19)

with dxu(1) = h andw(0) = 0, this can be written as
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1 1
/ axwaxu:hw(1)+/ wsdx (6.20)
0 0

This is the weak for of the PDE. Equations of this type in meates are called “virtual work”,
or virtual displacement formulations (tineare the virtual displacements). It can be shown that the
weak and the strong form are identichliigheq2000, sec. 1.4) and the FE method proceeds from
eg. 6.20 by assumingi andw can be taken from a simplified functional space, typicallydzhon
low order polynomials.

It is useful to define a shorthand notation

a(w,u) = /01 oxwoxu dx and (w,s) = /Olws dx (6.21)
Then, we can write eq6(20 as
a(w,u) = (w,s) +hw(1) (6.22)
a(.,.) and(.,.) aresymmetric
(W, s) = (S, W) (6.23)
andbilinear
(c1u+ cov,w) = c1(u,w) + C2(Vv,w) (6.24)
forms.

6.1.3 Galerkin method

If we consider a finite dimensional approximatioruandw on a FEmeshd andw from a function
spaced and W, whereu'e U, W € W such that

G(0)=g and w(0)=0 (6.25)
We can then construct a solution witlke "W/
0=vV+§ (6.26)
whered’is a given function such thai0) = g, which satisfies the BCs because
G(0) =¥(0)+§(0) =0+g (6.27)
asv(0) = 0, sincev'e W. If we substitute eq.§.27) into eq. 6.22), we get
a(w, V) = (W,s) +w(1)h —a(w,§) (6.28)

where we solve for the LHS and the RHS is determined by BC'’s.

This is an example of aveighted residual methodhere are other approaches such as the
Petrov-Galerkin method. The Galerkin method is the siniflesause it assumes theaidw are
from the same function space, itke same shape functions (see below) are used for the solution
and the weightsv .
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6.1.4 Discretization

Let’s assume that there anenodes such that we can write the weighting functions as

n

W(X) = AZ]_CA NA(X) (629)

where theNa(x) are calledshape basis, or interpolation functions. We require
Na(0)=0 VA (6.30)

such thatn{0) = 0 can be fulfilled. If we also introduce a shape function

~

N (0)=1  (withN; ¢ W) (6.31)
then
g=gN;  sothatg{0) =g (6.32)
We can then write
0=V+§g
— AidA Na + gNy (6.33)

such thau(0) = g. If we substitute eqs6(29 and 6.33 into eq. 6.28), then

a(%cANA(l),%deB> = (§CANA,S) —+ ;CANA(].)] h—a (;cANA,gN]) . (6.34)

Because of bilinearity, we can writes ca Ga = 0 with

Ga= g a(Na,Ng) dg — (Na,s) — Na(1)h+a(Na,Ny) g. (6.35)

The Galerkin equatior6(28) is supposed to hold for al, therefore alta, which mean thaéa =0,
so for allA

ga(NA, Ng)ds = (Na,S) +Na(1)h—a(Na,N1)g (6.36)

if we write Kag = a(Na, Ng) andFa = (Na,s) + Na(1)h—a(Na, Ny) g, then eq. §.36 becomes

Kd=F (6.37)
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whereK is thestiffness matrix d is thedisplacement vectarandF is theforce, or load, vectar
Once theKd = F system is asembled, one may solved@nd then obtain the spatial solution from

n

G(x) = daNa(x) +gNi(X) (6.38)
A=2

n

or U(x)= ;dA Na(x) withd; =g. (6.39)
Note thatK is symmetric,

K= KAB = a(NA, NB) (6.40)
—=a(Ng,Na) = Kga =K' (6.41)

which facilitates computations.
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6.2 A1-DFE example

We now provide a numerical implementation of the 1-D FE exanop the previous lecture. We
subdivide the[0, 1] interval inton subintervals ‘elements”) delimited byn+ 1 nodesor nodal
points such that; = 0 andx, 1 = 1. The subintervals are denoted by

[Xa, Xa 1] With ha = Xa 11 —Xa (6.42)

wherehy may vary and a general grid spacing may be defindd-asnax ha).
We can then choose interior shape functions fer 2 < n as

per(X=Xa_1) for  xa 1 <x<xa,
Na()=1{ p(xari—x) for xa<x<xa1, (6.43)

0 otherwise

For the boundaries, we use special shape functions

Ni(X) = hi(xz—x) for xg <X<Xn.1 and (6.44)
1
~ 1
Nnt1(X) = h—(x—xn) for X, < X< Xpi1. (6.45)
n

An illustration of interior and boundary shape functionsl®wn in Figures.1; note thatNay = 1
atx = xa and zero for other nodes.

A
( A A
K /\lf\ NI/I +/ i
' Xk XA | X <

_>(t X x3 KA’\

Figure 6.1: Example of 1-D shape functions

With this choice, the shape functions are zero outside thmity of A. They havelocal sup-

port, which means thaK is sparse because théNg,Na) = folaxNA O0xNg dx integral is zero for

B > A+ 1. TheK matrix isbanded and the bandwidth depends on how the nodes are numbered
(leading to an optimazation problem during mesh design)veimat basis functions are used. Be-
sides symmetry and bandedndsss alsopositive definitewhich means that

c'Kec >0 (6.46)

for all c such that™ Kc=0 = ¢ = 0. These properties allow efficient solutiontotl = F.
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6.2.1 Local vs. global points of view

It is useful to compare the,.) anda(.,.) operations in local coordinate systems that are referenced
to each element as is shown below in Figarg

Va+:
Vs <:{> l><l
—-|

N[)‘) XA XA 4|

| l
= ?
Figure 6.2: Example of 1-D shape functions in global (left) and element-local (rigrg)dioates
1 1
X(&) = E(hAE+XA+XA+1) & &= h:(ZX—XA—XAJrl) (6.47)
u(x) =% daNa(x) < u(§) = Ni(&)d1+N(§) . (6.48)
We can express the global shape functigyof eq. 6.43 in a local coordinate system as
1
Na(€) = 5 (1+E&E) fora=1.2 (6.49)
. 1 1 .
(i.e. N (&) = > (1-¢); No§) = > (1+¢) withg={-11}). (6.50)
Likewise, we can express the global coordinate within teeneint as
2
X(E) =S Na(€)E (6.51)
a=1

wherex; are the global nodes that belong to the eleneefor the assembly of the stiffness matrix,
derivatives ofN; andx® with respect t& are required. We note that

Ea (_1)a B he

0sNa = — > = 3 and 0dgx= > (6.52)
e\—1 2

0x& = (0:X°) = e (6.53)

where for higher dimensions the tefidx®) ~* will be a matrix inverse.

Note: The choice of shape function is determined by the element. ith a two node element,
shape functions can only be linear.
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6.2.2 Matrix assembly

With n elements, we therefore hagtobally

K=[Kag] annxnmatrixand F={Fa} annx1vector (6.54)
where (from last lecture)
Kag — a(Na, Ng) — /O " 3, NadNe (6.55)
Fa = (Na,S) +hdani1—a(Na,Ni)g (6.56)
. /O "Nasdx+ Saniih—g /0 0 Na 0N dx (6.57)

whereNa(Xn+1) = dan+1 is assumed. The integrals over the problem dorf@iti can be written
as summations over elements, therefore

n

K= K° with K°=[KSg) (6.58)
e=1

(6.59)
F=Yf with F°={Fg} (6.60)

e
KSg — / d0%0,Na 0,Ni dx (6.61)
Fe— / NaSAX+ hdendanst — / 9Na 0Ny dx (6.62)

Qe Qe

where the element domafd® = [x3, x5].

Since theNa only have local suppoz; =0 if (A#eore+1) or (B# eore+1) andFf =0
if A#%eore+ 1, and we can obtain the global stiffness matrix and forceordzy summing up
elemental contributionk® andf®

K® = [Kap] @ 2x 2 matrix, f®={fa} a 2x 1 vector (6.63)
(2 is the number of nodes per element!)

Kab — a(Na, Nb)e - / axNaabe dX (664)
Qe
(6.65)
Ksi9 for e=1,
fa= Nasdx+ 0 for e=2,...,n—1, (6.66)
o Sansth for e=h

The assembly proceeds as symbolized in FiguBeand placing thék® element-local matrix into
the global stiffness matrix requires use of an assignmeatadpr or array. This is discussed in the
worked example of the problem set.
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O
\‘\ IKe e
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‘BC

Figure 6.3: Visual example of stiffness matrix assembly process

6.2.3 Element-local computations

We wish to perform integrations in a local coordinate systHrthe original intervalx € [xg, x2] is
smoothly mapped int§ € [€1,&2], there exists ahange of variablesuch that

X2 &(x2) &2
Jafo= [ " deBex)] 1(x) = [ " dg e 1(6) (6.67)

By means of the chain rule we have
0 F(X(E)) = T (X(E)) BgX(E). (6.68)
Therefore, we can compute
KS, — /Q 0Na(x) 0,No(x) dx
= [ (X)) BMu(X) (e (6.69)
using the change of variable described above. Then usinghtiiea rule we have

0:Na(X(€)) = 0xNa(X(§)) 9sx(§) = 0xNa(X) = (GEX)’l 0z Na(&) (6.70)
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Then, plugging result back into ed.69

1
Ko = [, (0X)"2 0¢Na(&) 0¢N(8) 0px(E) & (6.71)
1
- / (9630 0cNa(®) 0gNo(8) cE (6.72)
= hie(—l)a“’ (see above) (6.73)
(6.74)
=kl 3 (6.75)

Sinceds N, is independent of element data, the computation only has peformed once, deriva-
tives dsx anddyx¢ depend on the element shape and need to be computed for edducation.
For the source term, we use the approximation

2
a=1
i.e.the source term is assumed to vary linearly across the eleminN,. Then we can write
1
[ Na 80 b= [ Na(x()) 8((8))0gx(E) & (6.77)
he 2
/ Na(€) No(£) dE S (6.78)

Since[*; Na Np = 3(1+&ap),

ot
se:% i ﬂ E} + boundary terms (6.79)
(6.80)

ot
:% ilsi-gzﬂ + boundary terms (6.81)
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6.3 Exercise: 1-D heat conduction and solution of linear sys-
tems

Reading
This finite element example is based on

e Hugheg2000, sec. 1.1-1.15

and multigrid solver part based on an exercis&Zbgng(2009.

6.3.1 Implementation of 1-D heat equation example

In the previous two lectures, we considered the example PDE
OxxU+s=0 (6.82)

on the domairx € [0, 1], u(x), s(x), and subject to essential (Dirichlet) boundary conditig®) = g
on the left, and natural (Neumann) B@su(1) = h on the right (heregyx = %). Equation 6.82
may be considered as a simplified version of the steady-s¢aieequation

OxxI +H=0 (6.83)

with sourcess = H.

You should consult your lecture notes for details (see 68, but in brief: If we haven
elements between+ 1 global nodes, the weak form of e®.82 can be written for each global
nodeA as

g a(Na,Ng)dg = (Na,s) + Na(1)h—a(Na,Ny)g. (6.84)

Here,Na are the shape functions in the interi@js another global node, arfdh the boundary
shape function for the essential boundary condigofhis can be further abbreviated by

1
Kag = a(NA, NB) :/ aXNAaXNBdX (685)
0
Fo = (Na,S)-+Na(l)h—a(Na,Ny)g (6.86)
1 1 A
. / NASAX Sansth — ( / axNAaXNldx) 9. (6.87)
0 0

where we have used the definitions of the bi-linear foats:) and(-,-) from lecture, and the

Kronecker delta
D I |
dij= { 0 else (6.88)

is used for the flux boundary condition (also $éieghes200Q chap 1).
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The approximate solution afafter discretization of the weak form is given by

n+1
G(x) = AZZdANA(X) +Nig = > daNa(x), (6.89)

where the latter summation implies choosing the boundaapeifunction and BC if needed. The
vectord = {da} values have to be obtained by solution of the matrix equation

Kd =F, (6.90)

with K = {KAB} andF = {FA}.

We discussed in lecture how the integration over the domeirbe broken down into summa-
tion over integrals over each element (see 4€%). This integration is most easily performed in a
local coordinate system1 < ¢ < 1 between the two nodes of each element, which has a mapping
to the corresponding, global coordinate interixal Xa11]. We can also express the shape functions
asx(&),

X(&) = ;NA(E)XA and u(€) =% Na(§)da. (6.91)

The globalk matrix and thd= vector are then assembled by looping over all elemerte X n
and adding each element’s contribution for shared nodes.hBgge of integration variables and
the chain rule, those elemental contributions follow as

1 1 -1

€ [ —
k(1) 692
whereAx is the element sizexa 1 — Xa, and for the force term

kaig for e=1
A
fe_ %‘( ?:ZSQ )+{ Sans1 for e=n (6.93)
1T e 0 else

where we have assumed that the source fundiearies linearly over each element, agdand

s, are the contributions from each local nagwithin the element frons(x). After assembly, one
needs to ensure that each row of the gldbahatrix that corresponds to a fixed value (Dirichlet)
boundary condition, will only have a diagonal entry and ttieeo columns for this row are zero.

6.3.2 Exercises

(a) Downloacheatldfe.m , and all helper routines for this week from the course weh $tead
through the implementation of what is summarized abbealdfe.m , and understand this
code.

(b) Fill in the blanks inheatldfe.m and experiment with a solution of e6.82 for n =3
elements.

2.1 Print out the stiffness matrixu{(stiffness) ) to appreciate its banded structure.
Does this look familiar to you?

2.2 Choose the Matlab solveso{ver=0 ) and plot the finite element solution at the nodes,
as interpolated within the elements, and compare with thé/acal solution.
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6.3.3 Solution of large, sparse linear systems of equations

The finite element method quickly leads to very large, lirsatems of equations
Kd=F (6.94)

whose solution can be quite involved. Ideally, we would haffd¢he solution of eq.§.94) to a
computational scientist and use a “black box” solver. Hamvgpractice shows that the nature of the
physical problem and the best solution method are oftemtimiteed. Choosing a different solver
might also allow addressing largexg.3-D, problems because of improved efficiency. Moreover,
it is very hard to make solvers bullet-proof and one oftenoenters problematice(g. unstable,

or no convergence) performance in practice. Linear systdraguations also arise in other fields
of geophysics, and some exposure to computational linggbed is needed to understand the
MILAMIN (Dabrowski et al. 2008 finite element implementation which we will use later. We
therefore digress a bit here. If your research has you délalmatrices a lotGolub and Van Loan
(1999 is a classic numerical linear algebra text that might camteaindy.

Direct solvers

For the finite element method, we can always write our probietihe form of eq. §.94), whereK
is a squaren x n matrix. A general strategy to solve .94 is thenLU decomposition

K=LU, (6.95)

whereL andU are lower and upper triangular matrices, respectivelyctwbnly have zeros in the
other part of the matrix. The solution of e§.94) can then be obtained efficiently from

Kd =LUd=F (6.96)

by solving fory = L~!F and thend = U™y, because the inverse bfandL are computationally
fast to obtainLU is often how general matrix inversion is implemented on awater.

For most FE problems, th€ matrix will also be sparse and banded. Special algorithnss t&x
exploit this feature such that the run time is ideally dortedaby the number of non-zero entries
of K, rather than the full size. Moreover,Kfis symmetric and positive definite, as in our example
above, we can use the Cholesky decomposition for whiehLT and computations are twice as
fast as for the generédlJ case. However, for complex, 3-D FE problems, current coatputal
limitations often prohibit the use of direct solvers whishwhy iterative methods which do not
require matrix decomposition or inversion, are used.

Note: Symmetry mean& = KT, whereKT is the transposek;] = Kji. Positive definite means that
c"Kc > 0 for any non-zera. Graphically, this corresponds for a2 matrix to a well defined minimum
(lowest) point in a curved landscape, which is important for iterative mestfeod. Shewchuk1994). Posi-
tive definite, symmetric matrices also arise in least-squares problems in gézgligversions€.g.seismic
tomography, see for exampBonschi and Dziewiwski 1999 for a nice introduction to linear algebra in this
framework). Least-squares means that we wish to solve

AX — b (6.97)
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in the sense thg®Ax — b| = min, i.e. deviations from the true solution are minimized, for a mafixhat
may be under-determinede. not simply invertible. It can be shown that the least squares solutieis
given by

-1

xis= (AT-A)""-AT.d, (6.98)

where (AT -A)*1 is the generalized inverse (which exists even if the inversA,ofh 1, does not exist
because\ is singular).AT - A is symmetric and positive definite, meaning that Cholesky is also the method
of choice for direct approaches to firgs.

lterative solvers

Jacobi method The simplest iterative solution of e5.04) is given by the Jacobi method. If
K'is LU decomposed and we write the diagonal matrix (only non-zkmagadiagonal) oK asD,
then an iterative solution fat starting from an initial guess! (e.g.0) can be obtained from

DA+ =F—(U+L)d', (6.99)

where the iteration is overand is stopped oncé ™1 is not changing more than some tolerance
from the previous solution estimaté On an element by element basis, this can be written as

. 1 n .
dit = o (Fj - Kj|d|') (6.100)
i I=1T#j

where the summation is over dllbut for| = j. The Jacobi method following eg6.(L0Q is
implemented inacobi.m . It serves mainly illustrative purposes but is guaranteedanverge,
albeit slowly (see below), iK is “diagonally dominant” which is satisfied strictly wherethbsolute
value of the diagonal elements is larger than the sum of tkelate values of each row.

Gauss-Seidel Animprovement over the Jacobi method is the Gauss-Sei@)ld&@proach, where
the iterative rule is _ _
(D+K)d =F—-ud". (6.101)

The main benefit is thad'*1 can be computed frord' directly, without having to store a full
previous solution, following

. 1 . :
ditt=_— (Fj =) Kji d||+1— Kj d||> . (6.102)
bK) gj gj
Note that this operation can be done “in place”, and is imglet®ad ingauss _seidelm . The

GS method will converge (somewhat faster than the Jacoliadgtfor diagonally dominant, or
positive definite and symmetri€.
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Successive Over Relaxation (SOR) Successive Over Relaxation is a more general variant of the
Gauss-Seidel method that can lead to faster convergenegisidbtained by adding a parameter
w which determines the weight of the current solution in theghvied average used to compute the
next solution.

d'j“:(l—w)d}jtw (Fj—ZKjldﬁl—szldf) (6.103)
I <] I>]

Settingw = 1 will reduce SOR to the GS method. The optimal valugva$ dependend upon the
matrix K, but settingw = 0.5 is a good starting point. The method has been rigorousiywisho
converge for symmetric, positive definite matri¢efor 0 < w < 2.

Exercise

e Plot the Jacobi, GS, and SOR solutions for 32 elements anéranae of 104, 10~°, and
106 on one plot each; comment on the accuracy and number ofiitesatequired. Can
you improve the definition of tolerance for the Jacobi method

Choose a tolerance of 18, and record the number of iterations required to solve tBeFE
example problem using the Jacobi and GS methods for inaigasimber of elements,g.
for 8, 16, 32, 64, and 128 elements. (You might want to autertiegse computations and not
wait until convergence and record the results by hand.)tRé&humber of iterations against
number of elements for both methods. Comment on the “scabhgération numbers with
size.

Conjugate gradient You have now seen that while the Gauss-Seidel method is amvement
on the Jacobi approach, it still requires a large numbereoéiions to converge. This makes both
methods impractical in real applications and other apgres@are commonly used. One of those is
the conjugate gradient (CG) method which works for posithe@inite, symmetric, squar@ & n)
matrices. The CG method is explained in a nice, geometriedadly Shewchuk1994). We cannot
explore the motivation behind CGs in detail, lmohjgrad.m provides a pretty straightforward
Matlab implementation which you should check out.

The CG method provides an exact solution aftgerations, which is often a prohibitively large
number for real systems, and approximate solutions may thme® be reached for a significantly
smaller number of iterations. There are numerous tweaksvimg modifications to the conjugate
gradient method that pertain to “pre-conditioners” wheeesglve

M~1Kd = M~1F, (6.104)

for someM which approximate¥ but is simpler to handle thalk. The best choice of these is,
for some applications, an active area of research. Forspaast-squares problems, such as for
seismic tomography, the LSQR approachPafge and Saundeid982) is a popular choice that is
used by most researchers at present for linear inversions.
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Exercise

e Switch the solver from the GS method to conjugate gradiedtiaorease the maximum
iteration number stepwise from a fraction mto the full n (as determined by the number
of elements which you should choose largey.200, for this exercise). Test different initial
guesses fod' (e.g.all zero, random numbers), record the convergence and catronghe
solution.

Multigrid  An interesting philosophy to solving PDEs of the type we ayesidering for the 1-
D finite element example is by using several layers of vagiabsolution grids€.g.Press et al.
1993 sec. 19.6). The insight is based on the observation th&#luss-Seidel method is very good
at reducing short-wavelength residuals in the iterativatsm for d (“smoothing”), but it takes a
long time to reduce the largest wavelength components ofdsielual. (You should try to plot
successive solutions of the GS method compared to the aalyolution for different startindo

to visualize this behavior.)

For the multigrid (MG) method, the idea is to solve the equegito within the desired tolerance
only at a very coarse spatial discretization, where onlyvaiferations are required. Then, the
solution is interpolated up to finer and finer levels wherg/aflew GS iterations are performed at
each level to smooth the solution. One then cycles back atid dotil convergence is achieved at
the finest, true solution level. There are several diffeegaproaches that are all called “multigrid”
methods and basically only share the same philosophy.Piftees are, for example found in terms
of the way the cycling between fine and course resolutions@rductedé€.g.Briggs et al, 2000,
and we will only discuss the “V cycle” method. Multigrid mefths are now implemented in most
3-D finite element method<Zfiong et al. 2007 because MG has, ideally, the perfect scaling of
O(N) whereN is the size of the problem. MG methods areas of active relsdarg. algebraic
multigrid, which is related to adaptive mesh refinement).

The multigrid method is based on expressing the PDE b levels of resolution where the
number of nodes in each level, is given by

n=bx2"1+1 for i=1,2,...,L, (6.105)

whereb is the base, typically a small number such as 2 or 4. At é@dbvel, we need to construct
separate stiffness matricas;, and the corresponding force vector where the resolutiorinfe
i = L solution is the best approximation kal = F, and the forcing is only needed to be specified
atF_ (see below).

An example implementation may proceed like so (s=g,Press et al. 1993 sec. 19.6 for
some alternatives): We start at the highest lekghnd perform only a few, fixed number of GS
iterations for an rough approximade from

Kid, = FL (6.106)

to remove the short wavelength misfit starting from an ihgiaessd, = 0. The residual is then
given by
R =F_—Kd.. (6.107)
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We thenproject or restrict, the residual to a coarser grid_at 1 by a projection operatd?
RL_1 =P 1R (6.108)

P will be some stencil giving more weight to the fine resolutimdes that are closer to the coarse
resolution node to which we project. We next GS iterate

Kiod; = R; (6.109)

fori =L — 1 for another small number of iterations (initializidgagain withQ), performing anoth-
er “smoothing” step, reducing short wavelength fluctuaioNote that eq.6.109 now operates
on the residual and not the load veckosuch that we are computing correctionslodd. We then
repeat the smoothing and projection steps down=tal where eq.§.109 can be solved quick-
ly and exactly. This completes the downward leg of the V cyeleere the longest wavelength
residual has been addressed.

Next, we have to propagate the correctih fromi = 1 toi = 2 and higher resolutions by
means of a “prolongationt,e. an interpolation to higher resolution by an interpolatige@torl

odi 1 = lj_j110d;. (6.110)

| may be a linear interpolation, for example, which is easydmpute for the mesh structure
edg. 6.109. This upward interpolatedd;, 1 can then be smoothed by using it as a starting guess
for a fixed number of GS iterations for

Ki+10di11 = Rit1 (6.111)
with &d;, 1. We can now correct
o0di1 = 0di;1—addiig (6.112)
Rit1 = Riz1—00Rj 1, (6.113)
(6.114)

with 8Rj 11 = —Kj;+10di+1 and weightingt = (8Rj1 - Ri+1)/\6Ri+1|2. We continue by projecting
od; in this fashion up to = L, where we updatd; = d_ + &d., which completes the upward leg
of the V. The whole V cycle is then repeated until the desioderaince fod, is reached at which
pointd. = d. Details of the implementations of the MG method, such astheothing, restriction,
and prolongation operations, depend on the problem anddiinedary conditionsd.g.Press et al.
1993 Briggs et al, 2000.

Exercise

e Download the MG implementation of the 1-D FE example (based @ode byZhong
2008, multigridm . Read through the implementation, compare with the abovipegec
and understand the approach. Compare the number of itesatemded for the MG solver
with that of the GS method for 32, 64, 128, 256 numbers of efgsd’lot the scaling of the
number of iterations, or time spent in the multigrid subioeitwith the number of elements.
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Temperature
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Figure 6.4: Coarse finite element mesh with solution for temperature, allowing for an elliptickision
and a boundary at mid-model height.

6.4 Two-Dimensional boundary value problems with FE

Reading Hugheq2000 secs. 2.1 - 2.6, 3.1, 3.4,3.8-3.9
egslcm]
We will now consider the solution of 2D boundary value proldeusing finite elements, which

can be easily expanded to three dimensions. We write 2 = ()z() for a location vecto;

with i = 1,2 and a normal vectar on the boundary of the domainQ. As an example problem
we will now revisit the linear heat conduction problem.
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- %

Figure 6.5: Visual representation of domain, vector, and normal

6.4.1 Linear heat conduction

If we allow for anisotropic diffusivity (which may apply tdvé oceanic plates), Fick’s Law can be
written as

Z ot
G = —Kij0jT = — J;Kij ax (6.115)

where repeated indices imply summatiognis heat flux,kjj = Kji is the conductivity matrix (we
usek normally for diffusivity but we wish to distinguish it fromhe stiffness matrix), and is
temperature. In vector notation,

<= [k (6.116)

and, usually, for the isotropic case
Kij = K(X)0jj (6.117)
is assumed. In steady-state, the energy equation is

O.g=H (6.118)
or 0ig = 0ikjj0jT=H forQ (Poisson Eq.)

with BCs:
T=g onlg and
—gini=h only (6.119)
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wherel g andl'y are the parts of the boundary where fixed temperature or fixedcthnditions
apply, respectively. For isotropy, we recover

0i §jjk 0jT =K 0i0;T =H (6.120)
- 0°T  8°T
conductivity — K (W + ﬁ) =H. (6.121)
The weak form representation of e§.119 is given by
—/ dQ awg :/ dQwH+ [ dr wh (6.122)
Q Q Th

where the LHS is the diffusion term, the first term on the RHSesponds to volumetric heating,
and the second term on the RHS is the flux through the boundeejd&hes2000, sec. 2.3 for
the derivation. Eq.§.122 can then be expressed as

aw,T) = (w, f)+(wh)r (6.123)

with

a(w,T):/ dQ diwkij 0;T
Q

(w, f) = / dQ wH (area integral oveR)
Q
(w,h)r = / dr wh. (line integral over)
I
It is convenient to use vector/matrix notatiaiwkij 0; T can then be written as
T . - 61W . alT
(Ow) 'k OT with  Ow = (azw) and 0OT = (62T> (6.124)
such that
a(w,T) = / dQ (Ow)Tk OT (6.125)
Q
. 10 . .
with K =K (O 1) for isotropy in 2-D.

Using the Galerkin approach of choosing the trial and waightunctions from the same func-
tion space, we again posit for the solution

T=0+§ (6.126)

wherev= 0 onl g andg allows satisfying the Dirichlet BCs with = §on Mg
The weak form becomes

a(W, ) = (W, H) + (W, h)r, —a(W, §) (6.127)
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(compare to 1D case from two lectures ago).
Introduce the shape functioh for a global node A out offiy, total number of nodes. With

U= 3 Na0) da and gix)= 5 Na(x) g4 (6.128)
cl AcB

where we have again distinguished between interior nodgslzape functiol € 7 and those
on the Dirichlet boundary with € B. Arguing as for the 1-D case, the following assembly rules
result

Kd=F (6.129)

K=[Kpql  Kpg=a(Na,Ns), (6.130)

where 1< P, Q < ngqand the number of free equations is given by the total numiosoaes minus
the number of nodes on the Dirichlet boundédry

P and Q can be computed from a 1D array that maps a global nodl®o a global equation
number

P forAel
ID(A)_{ 0 forAeB (6.131)

such thaP = ID(A) andQ = ID(B). d = {dg} for the solution temperature$xj = 5 Na da and
F={Fp} (6.132)
where

Fp = (Na,H) + (Na,h)r, — > a(Na,Ns) g (6.133)
BeB

andK is again symmetric and positive definite.

6.4.2 Matrix assembly

As before, we computk andF based on summation over all; elements.

Ne|

K=Y K K°={Kgo} (6.134)
e=1

KSQ=a<NA,NB)e:/ (ONa)TK (ONg) dQ | (6.135)
Qe
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The RHS in eq.§.139 corresponds to integrating over each element’s area.

Ne|

F=3F  F={F} (6.136)
e=1
FF‘?:/ dQ NaH +/e dr Nah— 5 a(Na,Ne)°dg 6137
o Th BeB

whererl'{ is the part of the Neumann (flux) boundary within elemgrindP = ID(A), Q=1D(B).
Within each element we compute for new nodes per elementiwitla, b < nep

K= {KS,} K& =a(Na,Np)®= [ dQ (ONa)"k (ONp) (6.138)
Qe
fe = [f] (6.139)
Nen
fam [ Na fadQ+/ Nahdr — 3 K&, (6.140)
Qe r b=1

wheregp = g(xp) for prescribedy and zero otherwise. It is convenient to write

K®= | dQB'DB (6.141)
Qe

whereD is Ngg X Nsg (rows x columns)nsg = number of spatial dimensions. In our cd¥es 2 x 2
andD =K. B is ngg x nensuch thaB = {B1,By,...,Bn,,} andBy = ON; is ngg x 1.

The B andD matrices’ general meaning is that of a gradient operatorthatiof a material pa-
rameter matrix at an element level, respectively. For exampthe temperatures at an element
level are given by

di
d3
d®={d3}=| . (6.142)
dr,
then
Nen
q(x) = —D(x) B(x) d*=—D(x) 3 Badg (6.143)
a=1

can be used to compute the heat flux within each element. Waewikit this for the elastic
problem whereB converts the nodal displacement solution into the strain.
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6.4.3 Isoparametric elements

It is convenient to use elements where the shape functiatsith used to map from a local coordi-
nate system, for example for a four node quadl a < nen, = 4) spanned by the local coordinates

&= (j) = ( _11) (6.144)
e ( 1) t= (1), (6.145)

Figure 6.6: Quad element in element-locd],n) coordinate space

Figure 6.7: Quad element in globdk, z) coordinate space

to the total global domain where the element may be deformed

Nen

X(&§) = Zl Na(€) X3 (6.146)
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are the same shape functions that are used to representuherso

Nen

E) = 3 Na(E) | (6.147)

If the mapping from the element loc&l, to real coordinate space, is differentiable, the determi-
nantj of the Jacobiad

. o OEX ar]X
j=det = det(a(EZ anz) (6.148)

is j(&) > 0O for all § within the elementdet) = d;xdnz— 0520, X). j(§) may, in practice, become
very small, which indicates that the element is greatly deta (two edges almost align, for ex-
ample) which is to be avoided.

The practical use of arises from element-local integration. Recall from the 1laBec

/Qef(x)dQ: /_11f(x(E))dE g—;‘ :/_llf(x(E))aaxdE (6.149)
which generalizes to 2-D as
1 1 )
[ teoda= [ d& [ an f0En).2En) iEn) (6.150)

The above equation is a result of the change of variablesambte used to evaluate the, .) type
integrals.

6.4.4 Numerical integration

While the integral over simple shape functions may be easdljuated analytically, it is most con-
venient to perform a numerical integration over the elenaeea or volume®.

In 1-D, the objective is to optimally approximate

Nint

1 ~
| dea®=y géow (6.151)
1 i
for a small number of integration pointg,:. TheW are the weights for the function values at the
integration points;. For example, the

Trapezoidal rule corresponds tojy; = 2; 21 =—1;12=1; W =1 and is second order accurate.

/bf(x) dx ~ (b_a)w (6.152)
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Simpson’s rule corresponds t0in; = 3; &1 = —1; &, =0: §3=1; W, = LW =2 Ws=1and
is fourth order accurate.€. Simpson’s rule integrates a cubic polynomial exactly).
b _
/ f(x)dxzb—za f(a)+4f(%))+f(b) (6.153)
a

Gaussian quadrature is the optimal (fewest integration points for maximum aecyy) strategy.
Forniyt, it is defined by

2

W = . . 1<i < Nint (6.154)
(18P (8)?) i
Whereéi is theith root of the Legendre polynomial
1 0" 5 n

This rule isO(2niy;) accurate in 1-D, and weights aﬁdlocations are tabulated (see below).

In 2-D, we can compute
1 1 Nint Nint -
d/ dn g~ L WW 6.156
L) a3 5 aldfww (6.156)

Finally, we often need to convert the derivatives of the ghiamctions with respect to the global
coordinates to local coordinategx). By means of the chain rule we obtain

axNa - az Naaxz + ar] Naaxr] (6157)
azNa - aE Naazz + ar] Naazr] . (6 158)

This can be written in matrix form as

0x§ 0
(04N 22N} = (05N (6 92 (6.159)

(multiply and add, column wise)

andos N, as well a®), N, can be easily computed from the shape function definitiowéver, the
0x¢ type derivatives are not available explicitly. We do know thverse relationships

Nen

KEN) = 3 M0 (6.160)

Nen

2(&n) = ZlNa(E,n)ZS (6.161)
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from which we can compute

J=0x = (azz anz) (6.162)

(9. 0xx = ZaéNaxg; Onz= zanNazg).

It turns out that) is the inverse of eq6(159

0x& 078 4 1 ( Onz —6nx)
—J 1=z 6.163
(axr] azr]) j \—0:Z 0gX ( )

with j = det(dgx) = 9sX0nz— dnx0sz. Therefore

{0xNa,0Na} = {0gNa, 0y Na}J ™* (6.164)

6.4.5 Simple elements, shape functions and Gaussian quadrature rules

1-D linear shape functions
Na(®) = 3(1+&8&) a=1,2 withtwonodesaf; = —1; & =1. 0Na(§) =2 = 2"
Quadrature

Nint & W, accuracy for integration
1 0 2 29order  [1 dE
2 {Q—%; Jié} {1,13 4" order "

Ni N,
O ®

Figure 6.8: 1-D linear shape functions

Bilinear quadrilateral (“quad”) element

four nodes are located at

USC GEOL540 127 Numerical Geodynamics



CHAPTER 6. FINITE ELEMENTS

o— O

Figure 6.9: Quad element nodes in local coordinates

El:{_17_1} 22:{15_1} (6165)
&= {11} &={-11) (6.166)
&a={&a,Na} etc. fora=1,2,3,4 (6.167)
Na(8) = Na(£:) = 51+ Ea€) (14 Na) (6.168)
2 N
A

Figure 6.10: Quad element shape functions

USC GEOL540 128 Numerical Geodynamics



CHAPTER 6. FINITE ELEMENTS

Quadrature in 2-D

Nint visual ﬁi w; forintegration
1 [x] {00y 4 [hdeftdn
X X ”

2 X X {7 7} 1
EF T
1 1 ”
S
{(hd 1 :

For higher order quads, serigheg2000, sec. 3.7

Py

[ swatiply  11d Lapauge

oty fowete, (Ctutm jurt]

Figure 6.11: Other quad element families

Hughes(2000 p. 191 discusses the required level of Gaussian quadriiuaequate conver-

gence for different element types.

Triangular elements

Linear triangle

t(r,s)=1-r—s (6.169)
r={r,s} (6.170)
ri={1,0} Ni(r,s) =r (6.171)
ro={0,1} No(r,s) =s (6.172)
rs={0,0} N3(r,s)=t=1-r—s (6.173)

Quadratic (six node) triangle
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teo

3 = r
T @

Figure 6.12: Linear triangle element nodes in local coordinates

@
®

©)
® & O

Figure 6.13: Quadratic triangle element

Ny =r(2r —1) Ng = 4rs (6.174)
Ny =s(2s—1) N5 = 4st (6.175)
Nz =t(2t —1) Ne = 4rt (6.176)

SeeHughes2000 Appendix 3.1 for Gauss quadrature formulae.
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6.5 Excercise: Heat equation in 2-D with FE
Reading

e Hugheg(2000, sec. 2.3-2.6
e Dabrowski et al(2008, sec. 1-3,4.1.1,4.1.3,4.2.1

This FE exercise and most of the following ones are based erMiLAMIN package by
Dabrowski et al(2008 which provides a set of efficient, 2-D Matlab-based FE megiincluding
a thermal and a Stokes fluid solver. Given that the code uséaidaMILAMIN is remarkably
efficient and certainly a good choice for simple 2-D reseg@rcblems that lend themselves to FE
modeling. For your final project, you may want to considerking on expanding the MILAMIN
capabilitiese.g.by adding advection to the thermal solver and combiningtihwie Stokes solver
for a convection code.

For this and the following exercises, | slightly rewrote treginal MILAMIN routines to sim-
plify things. Over the next weeks, we will however strive isaliss all of the issues described in
Dabrowski et al(2008. This paper will be a good reference, along with my lectwtes, and the
original MILAMIN Matlab codes can be downloaded frdritp://milamin.org/ (the latter will
not be of help with the exercises).

6.5.1 Implementation of 2-D heat equation

We spent the last three lectures discussing the fundarsesftéihite element analysis building up
to the solution of the 2-D, stationary heat equation, whecgiven by

0 oT 0 oT

wherek is conductivity (not diffusivity, we use& to distinguish from the stiffness matrk), and
H are heat sources. BokhandH may vary in space, and, unlike for FD, the solution domain can
now be irregular.

The FE approach casts the boundary value problem (boundagitons are assumed given)
in the weak (variational) form, discretized on elements ticv shape functions\l, approximate
the solution of the PDE &B. The solution is given by nodal temperatufies- {Ta} for all NNOD
nodes of the mesh, which can be combined to

NNOD
Tx2)= Y Nax2Ta (6.178)
A1

Following, e.g, Hughes(2000, we use the Galerkin approach for which the resultingretss
matrix components, on an element level, is

ONg ONp N3 ONp
KS :/ el =2 Q. 17
ab = Jo." (ax x oz az)d (6.179)
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Here,a andb are node numbers local to elemenand integratiorf)e is over the element area.

If we express the spatial coordinates- {x,z} in a node-local coordinate systefn= {&,n}
and use Gaussian quadrature WitHN T points and weight®\ for integration, we need to evaluate
terms of the kind

1 1 Ny AN, 0N, ON
e a b a b -1
KS, — /_1dz/_ldnx< % 5 o )J | (6.180)
NINT ON; 0Ny, N, ON
e ) a b a b -1
Kab = .ZW'K'(OE 5 + on an)J | (6.181)

whereJ~! and|J| are the inverse and determinant of the Jacobian matrix

ox  Ox
J:(?,_i g) (6.182)
08 on
respectively.
The load vectoF has to be assembled on an element basis as

FS = Nt dQ — K& Th, (6.183)
where the terms on the right hand side are due to heat sotitcasd a correction due to prescribed
temperatures on the boundarigzero flux BCs need no specific treatment, seeghes 200Q
p. 69 andDabrowski et al.(2008). The globalK andF are assembled by looping through all
elements and adding up té& andF€ contributions, while eliminating those rows that belong to
nodes where essential boundary conditichsdre supplied. The solution is then obtained from
solving

KT =F. (6.184)

Meshing

Downloadgenerate _mesh.m. Start by reading through this Matlab code, it is a modifaabf the
MILAMIN wrapper for triangle . Triangle is a 2-D triangular mesh generator that was writie
ShewchuK2002. That work is freely available a&source code and a flexible, production quality
“Delaunay” mesh generator. Delaunay mesh means that adlswae connected by elements such
that any circle which is drawn through the three nodes of ameht has no other nodes within its
circumference.

Note: The “dual graph” (sort of the graphic opposite) of a Delaunay meslthar Voronoi cells around
each node. Those can be constructed based on the triangulation ®ctingrines that are orthogonal to
each of the triangles’ sides and centered half-way between nodese Tho properties are important for
computational geometry, inverse theory, and interpolation problems.

A Delaunay triangulation is the best possible mesh for argivember of nodes in the sense
that the triangles are closest to equilateral. For FE aislyge always strive for nicely shaped
elementsi(e. not distorted from their ideal, local coordinate systenmfpiso that the)~! does
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not go haywire. Typically, meshers like triangle will allomu to refine the mesh.é. add more
nodes) for a given boundary structure and overall domaimibyreing minimum area and/or angle
constraints. Those refinements may also be iterativelyiegplased on an initial solution of the
PDE,e.g.to refine in local regions of large variations (adaptive megimement, AMR).

Exercise Download atest driver for the triangle wrappaesher _testm . You will have to fill in
the blanks after reading througbnerate _mesh.m, and make sure the triangle binary (program) is
installed on your machine in the directory you are running¥iou can download several different
architecture binaries from our web site, also check witmJdi

Note: For this exercise and those below, please plot and inspect graphssurdlea while playing with
the code, but no need to hand in printouts, unless | denote those plots yehicthould hand in ifold
face Also, no need to print out code for this problem set.

(a) Create atriangular grid using three node triangles ®dihmain < x < 1, 0< z< 1 using
minimum area constraint 0.1 and minimum anglé.Z0reate a plot of this mesh highlighting
nodes that are on the outer boundary.

(b) Change the area constraint to 0.01, remesh, and replot.
(c) Use second order triangles and an area constraint 05 @@ minimum angle of 30

(d) Using the same quality constraints, create plodl a mesh of an elliptical inclusion of ra-
dius 0.2, ellipticity 0.8, and 50 nodes on its perimeter. Cthe elements of the inclusion
differently from those of the exterior. Denote nodes on tbertdlary of the inclusion.

(e) Create and plot a mesh with a circular hole and a circutdngion of radius 0.1.

Thermal solver

Downloadthermal2d _std.m ; this is a simplified version of the MILAMIN thermal solvethér-
mal2d.m ) which should be easier to read than the versioDabrowski et al(2008); it also allows

for heat production. Read through this Matlab code and ifletiie matrix assembly and solu-
tion method we discussed in class and briefly reviewed abaiso download and read through
shp _deriv _triangle.m  andip _triangle.m  which implement linear (three node) and quadratic
(six node), triangular shape functions and derivatived,\@eights for Gauss quadratures, respec-
tively.

Exercise

(a) Download a rudimentary driver for the mesher and thersoater, thermal2d _test2.m
You will need to fill in the blanks.

(b) Generate a regular mesh with area constraint 0.003 dwel g® heat equation with linear
shape functions, without heat sources, given no flux on tessiunity temperature at the
bottom, and zero temperature at the top. Plot your resulis.ddnstant conductivity.

USC GEOL540 133 Numerical Geodynamics



CHAPTER 6. FINITE ELEMENTS

(c) Place an elliptical inclusion with radius 0.4, elliptyc0.8, and ten times higher conductivity

than the ambient material in the medium, and plot the respliemperatures. Experiment

with variable resolutions and second order triangles. Comiroa the how the solution
changes (visually only is OK).

(d) Set the heat production of the inclusion to 10 and 100,moidthe solution. Compare with
boundary conditions where zero temperatures are presaooivall boundary conditions.
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mean normal stress

0.08

0.04

-0.04

-0.08

-0.08

Figure 6.14: Stress solution for a sheared, elastic box with an inclusion of differesniggtin (see problem
set for details).

6.6 Exercise: Linear elastic, compressible finite element pl»
lem

Reading
e Hughegq2000, secs. 2.7,2.9-2.11, 3.10
e Dabrowski et al(2008

This FE exercise is again based on the MILAMIN packageDaprowski et al.(2009. |
rewrote their “mechanical” solver (incompressible Stokeisl, to be discussed next week) for the
elastic problem, and simplified it to reduce the dependemcpackages external to Matlab. A
highly optimized version of the code that, for example, usesrix reordering folK is available
from me (closer to the origindbabrowski et al (2008 code). When inspecting the source codes,
you should find many similarities (same mesher, same varistblicture, etc.) with last week’s
2-D heat equation exercise.
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6.6.1 Implementation of 2-D elasticity
Problem in strong form

The strong form of the PDE that governs force balance in aumeds given by
O.-0+f=0, (6.185)

whereo = 0j; is the stress tensor afid body force (such as due to gravity). Written in component
form as PDEs for the finite element dom&for each of the three spatial coordinatekis is

djgij+fi=0 on Q (6.186)

with essential boundary conditions for displacementsg on g and natural boundary conditions
for tractionsh = o - n on ", with vectorn normal to the boundary such that

U = g on Iy (6.187)
gijnj = hi on Iy. (6.188)

Here,[', andl,, and similar forg, denotes that different components of the traction vectay m
be specified on different parts of the domain boundary

In the case of linear, elastic behavior, the constitutive limking dynamic with kinematic
properties is given by the generalized Hooke’s law

o=Ce or Gij :Cijkl &kl (6.189)
with the elasticity tenso€, and the strain-tens@f computed as

1
2
Note the definition of the; ;) derivative short-hand. The engineering shear strain isrgiyy

Yij = 2¢ij (note the factor of two which often causes confusion).
For an isotropic material, the constitutive law simplifies t

&ij = Uij) (ain—l—ajui). (6.190)

Oij = A&idij + 21Eij, (6.191)

wherep andA are the shear modulus and Lamparameter, respectively; the latter specifies how
incompressible a body is. (The dilatiep = zf’:lsii, and the Kronecked, djj = 1 fori = j and
zero fori # j.) These moduli can also be expressed differeetly,we can write

2V VE

AR v (1+v)(1—2v)

with E =2u(1+v), (6.192)

with the Poisson rati® and Young’s modulu€. If a block is fixed at the base and loaded in
z-directions without constraints, thenmeasures the deformation in the horizomtat —eyx/€z2

E measures the stress exerted for the same experiment if tegiah#s not allowed to give way
sideways (free-slip iz direction) byE = 0;,/€;z Note that\ = pfor v = 1/4, which is often close
to values measured for rocks.
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Problem in weak form

It can be shownd.g. Hughes 200Q p. 77ff) that the equivalent weak form formulation of the
elastic equilibrium PDE is given by the following statemefind the displacements for all
virtual displacementw such that

a(W7 U) = (Waf) + (Wa h)rh (6.193)
with
a(w, u) = / dQ Wi j,Gijit U (6.194)
(w,f) = / dQ wi f (6.195)
3
(w,h)r, = i; ( o dr Wihi> ) (6.196)

Note that unlike the thermal problem, the solution functiea wish to obtain using the finite
element method is a vectar, rather than a scalar.

Matrix assembly

In the finite element approximation, we then solve for theatalilsplacementd which approxi-
mateu within the elements with shape functioNsrom

Kd=F. (6.197)
The globalK is assembled from the element level by
Kab = /QedQ BaDBo (6.198)
wherea, b are local node numbers. The elemental force vector at lamdéais given by

fie: /QedQ Na fi +/re dlr Nahj — %kabgb. (6.199)
hi

B connects displacements at the nodal level with strains2Hay

axNa O

azNa axNa

We can represent the strain tensa@s a strain vectoe that can be computed from displace-
mentsu by a gradient operatdr, like

e=Lu or ej=Lju. (6.201)
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EXX ax O u
e= ezz - O az ( ux ) y (6202)
Yxz 0z Ox ‘

where the definition ofy, = 2¢yy simplifies the notation. Within each finite element the dis-
placements can be obtained by summation over the shapediusiéor each noda, N, times the
nodal displacements,

In 2-D, for example,

U = Uy = Nada = Nad (6.203)

whered, is the displacement at the local nodeanddX is the k-th spatial component of this
displacement. Then,
e=ej = LixNadX = BjyadX = Bada (6.204)

definesB,. If we define a stress vector

Oxx
Txz

(with T4, = 20y in analogy toyxy), then the (symmetric) elasticity matrix can be used to obtain
stresses from displacements like

The D matrix is a “condensed” version @f,
D1y = Ciju, (6.207)
wherel,J=1,2,... ng4(Nsqg+ 1)/2 in nsg dimensions, which exploits symetries@such that
Wi j)Cijii Uk 1) = €(w) " De(u). (6.208)
Equation 6.199 can then be written as

a(w,u) — / dQ e(w)De(u), (6.209)

wheree(w) indicates applying the gradient operator to the virtuapldisements, as opposed to
e(u) as in eq. 6.207). In the isotropic, 2-Dplane strainapproximationD takes the simple form

A+20 A O B 1 % O
D( A A+2u o) E(1-v) (f—v 1 o | (6.210)

0 0 u (1+v)(1-2v) 0 0 2%1——23)

where plane strain means that no deformation is allowede thirection,ey, = 0. For the case of
plane stresswhere deformation is allowed amgy = O,

X+2u _)_\ 0 E
1-v
0 0 M
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with
N H
A=———. 6.212
A+2p ( )
From eq. 6.212, it is apparent that plane stress reduces the effectiMemetdric stiffness of a

body, forv =1/4,\ = 2/3\, because out of plane deformation is permitted.

Viscous equivalence

The constitutive law for linear viscous flow with viscosity and deviatoric stress, o = 2ng, is
analogous to the elastic case wih= 2ue, assuming the material is incompressible. The latter
can, in theory, be achieved by letting— 1/2 such that the linear FE approach can be used to
solve simple fluid problems. In practice, however, speaaémeeds to be taken to allow for the
numerical solution of the incompressible elastic, or thek&¢ flow case, which we discuss in
sec.6.7.

Exercises

(a) Make sure you have the Matlab subroutiipedriangle.m , shp _deriv _triangle.m , ge-
nereate _mesh.m, and theriangle  binary from last week in your working directory. Both
shape functions and the mesher will be reused.

(b) Downloadelastic2d _std.m , a simple linear elasticity solver, ardic _el _D.m which as-
sembled. Also download the driver routinglastic2d _test2.m . You will have to fill in
the blanks.

(c) Inspectelastic2d  _std.m , compare with the notes above for linear elasticity, andhbet
solver from sec6.5.

(d) Download and inspedet2D.m , inv2D.m , andeig2d.m (for computing the determinant, in-
verse, and eigensystem ok2 matrices, respectively) from the course web site. Writing o
these operations specifically slightly improves perforagatompared to using Matlabis/
andeig functions. Also downloadrrow.m , which is a routine to plot vectors | got from the
web, and download and inspewic _el _stress.m andplot2d _strain _cross.m , which
are used to compute element integration node stresses ahdtialin- or stress, crossed-
vectors symbols for visualization of the stress tensoréndigensystem coordinates, respec-
tively.

(e) Consider a square, homogeneous elastic body with sheduwlusqu = 1, Poisson’s ratio
v =1/4 and size X 1 in x andz directions.

5.1 Assume the body is fixed at the base (zero displacemémtall z= 0), and sheared
with a uniform uy displacement ofip = 0.1 at the top £= 1) (Load case a of Fig-
ure 6.15). Assume the plane strain approximation and zero densityzéro body
forces). What kind of geologic deformation state does thisaspond to? What kinds
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AT “ Epedon, andi,

Uy uy(2) o s'&bq ;
5 "”.‘é‘“coj

%/;'/ = Ol/)—é} % “ él,« &4«/'9‘,'4.‘) e X
C) Uy =0
T T Y

AN L FF

Figure 6.15: Load case sketches for some of the exercises, along with common symtiotefoatic
boundary conditions.

5.2

5.3

5.4

5.5

5.6

of displacements would you expect, and how should the majrextensional and the
major compressionabg) stress axis align?

Compute the displacements and stresses using the 2-DdgEaprs provided. Use
linear, three node triangles and experiment with the istisgm order. Use a coarse
mesh with area constraint 0.01 and angle constraint 25

For this and each subsequent problem, hand in three plotst the deformed mesh,
indicating the shape of the deformed body, possibly exagmey the displacements of
each node; ii) a plot where the background field (colored)esamplitude of displace-
ment, and the foreground has displacement vectors, plaftacrigin at each original
node location; and, iii), a plot of mean (normal) stressdoed in the background),
along with extensional and compressional stress axesrvesses. The Matlab rou-
tines | provide can, with some alterations, perform all &<t tasks.

Compare the predicted stress and displacements for glemie and plane stress ap-
proximations. Comment.

Compare the distorted mesh shape for linear trianglésthatt for six node, quadratic
shape functions. Increase the number of elements and centipampredicted stress
fields. Does the displacement and stress field agree witheyquactations for this load
case?

Consider Figuré.1% and prescribey displacements linearly tapered frag= ug at

z=1 down touy = 0 atz= 0. Compare the predicted displacements and stresses with

load case Figuré.15a. Comment on the stress and displacement fields.

Relax the kinematic boundary conditions on the sides@ndnd include body forces
with densityp = 1 at a fixed (no slip) bottom boundary condition (Figéréc). Com-
pute the displacements and stresses, plot those, and cammen

USC GEOL540 140 Numerical Geodynamics



CHAPTER 6. FINITE ELEMENTS

5.7 Compute the body force load case of Figareéxd with free-slip (no horizontal dis-
placementsuy, = 0, and no “vertical” shear stresseay; = 0) conditions on the left
and right sides. Compare the stress field with the previouspnstrained case and
comment.

() Consider the square elastic medium in 2-D plane strais plaentered, spherical inclusion
with radius 0.2, shear modulus 0.001. Increase the resali.g. use 100 nodes on the
outline of the inclusion, 0.001 minimum element area, andt@@ngle edge angle). Load
the system as in Figui@ 19, compute and plot the stress field, and comment.

(g) Bonus:Write a subroutine that computes the stresses at the gloBallacations, as opposed
to the integration points within each element as is curyeimplemented. Use the nodal
stresses anisurf ~ to generate a plot of triangles colored according to theimaob stress.
Compare with the previous plot.
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6.7 Incompressible flow and elasticity with FE

Reading Hugheq2000 sec. 4.2-4.4

6.7.1 Governing equations

e As for the thermal or the elastic problem, we will only coresidhe static case (but see
section 21 of the notes). In the absence of inertia casei{@finandtl number), this reduces
the fluid equilibrium (Navier-Stokes) equations to Bikes equationshich are formally
similar to the elastic problem considered in sec. 18.

e Since most fluids are (nearly) incompressible, we will rigxige general problem of elastic
deformation.

The ratio of the bulkB, and shean, modulus can be expressed as a function of Poisson’svatio

B 2(1+v)

no 3(1-2v)

As noted earlier, for the — % incompressible cas§—> o, However, in this case we cannot use
the regular, elastic (isotropic, linear) constitutive law

Oij = A OkUk Oij + 21 &jj (6.213)
because = 12_"—5‘\, becomes unbounded for= % Therefore, we need to use
Oij = — P Oij + 21 &jj (6.214)
instead, where the hydrostatic pressure is

p= _%Gkk- (6.215)

The fluid equivalent of eq6(219 is
oij = —pdij +2n & (6.216)

where we've repaced stragrwith strain ratee, andn is the dynamic viscosity. Since the addition of
p has introduced another unknown, we require an additionatcaint in addition to force balance

(Oo = f) which is given by the continuity (of mass) equation. In tlase of an incompressible

medium

O-u=0ju =0 (6.217)
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so that the strong form of the incompressible elastic and fluoblems become

0jcij+ fi=0 0jcij+ fi=0 (6.218)
oiuy=0 oivi=0 (6.219)

Ui = gj Vi =g (6.220)

gijnj = h; gijnj = hi (6.221)

where egs.q.218 and 6.219 hold in the domairf, eqgs. 6.220 and €.221) are boundary con-
ditions and hold o', andly, respectively.u andv are displacement and velocity, respectively,
and

- 1
&j =u(i,j) = E(aiu,~+ajui) (6.222)
: - 1
gj =Vv(i,j) = E(aivj+6jvi). (6.223)
Note that from eq.€.217 and by Gaul®’ Theorem

/dQ oiu; :/dr Ui Ui :/dl’ gin=0 (6.224)

and if there are only displacement/velocity BCs , &rd0, then pressures are only determined up
to a constant.

6.7.2 FE solution to the incompressible elastic/flow problem

Different approaches exist involving Lagrange multigignenalty methods, or Uzawa iterations.
See for exampleZhong et al(2007). All methods typically involve a stiffening of the deforng
structure using some parameiehat controls the degree of compressidn-» co would lead to the
desired case dfl-u = 0, but may lead to an ill-conditioned (hard or impossiblenert) matrix.
We will pursue a mixed formulation.

Mixed formulation

This is valid both for compressible and incompressible bnasuch that

Gij = —P Oij + 21Ejj (6.225)
/
diti+ % —0 (6.226)

where eq.§.229 corresponds to the elastic case. #er % = A — o =0y =0.
Forv < 3, we can eliminate eq6(226

p'= -\ (6.227)
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such that §.229 recovers
Oij = AOiu; &jj + 2UEjj.

However,p' is the proper hydrostatic pressure

1

P73

only for the incompressible case. For the compressible case

1 2
P=—30i =— (7\4-%1) &i = —Kgijj

O'ij

with the incompressible modulés= A + %“ but from eq. 6.227)
p’ = —)\Sii.

p’ ~ p andA ~ K only for p < A, the nearly incompressible case. The major results aramedtl
below.

Equations in strong form

0jcij+ fi=0 onQ (6.228)
AU + )—‘\) —0  onQ (6.229)
U = gj only (6.230)

ojjnj = h only, (6.231)

Equations in weak form

/dQW(i,j)oij —/qu(OiuhL;\—J) :/dei fi+r§/drhi wih (6.232)

wherew, g are virtual displacements and pressures, respectivedyngns the number of dimen-
sions. Special care must be taken in the next step: the chbslegape functions for pressure and
velocities/displacements (sekighes 200Q sec. 4.3), but in general, the pressure shape functions
should be lower ordere(g.constant) than the displacemergsy quadratic).

Matrix formulation
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(& ) ()= () 6239

where the LHS is symmetric but not positive definite (it hagatize eigen values or zero eigen
values for pressure modeg)are the pressures at nodesy.center of elementy are the displace-
ments at nodese(g.edges of elementsly; are the body forces, ard is the divergence source in
the boundary conditions.

This is called the “segregated d/p form” of the equationsiandlid for the general case (including
finite compressibility case).

K a(w,d) stiffness matrix (symm, pos. def.) (6.234)

G —(Ow,p) gradient operator (6.235)

G' —(q,0-v) divergence operator (6.236)
p 1

M — (q, X) symm, neg. def. fov — > M—0 (6.237)

In general, we can distinguish 3 casesdlass, we will only consider the element-by-element,
discontinuous pressure casg 3

(&) The compessible case

Kd+Gp=F (6.238)
G'd+Mp=H (6.239)

solve forp
p=MYH-G"d) (6.240)

substitute eq.q.247) into eq. 6.239

Kd+GM'(H-G'd)=F
(K—=GM1GT)d=F—-GMH (6.241)

which reduces to solving the following system of equations
Kd=F

whereK is symmetric and positive definite akd= K — GM~1GT andF = F— GM~1H
from eq. 6.241]).

If pis discontinuous on the elements, e§.241) can be solved locally, on the element
level.
— determinep from eq. 6.229.
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(b) The incompressible case
Solve eq. 6.239 for d, pre-multiply withGT and use eq.§.239 to get the pressure.

(GTK1G)p =GTK1F—H (6.242)
K p= F (6.243)
(c) The element-by-element, discontinuous pressure case

Kp=F (6.244)
u(x) =3 Na(x) d@ (6.245)

a
px) =3 Na(X) pa (6.246)

a

K« K® from element levels (6.247)

F«f® (6.248)

Matrix assembly for the element-by-element, discontinuoupressure case
KabZ/ dQ BIDB,
Qe

D here only has deviatoric terms, for the plane strain case

) 2 00
D=ul0 2 0],
001

andB transforms displacements into strains (as before).

fe— [ doNafi 0T Nahy 3 kol
hi q
Pressure components

1

me; = . dQ — N Nz N (6.249)
Mixed (6.250)
Jad = —/ dQ - (Nae) Ny (6.251)
h=—> gpadp (6.252)
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Stress vector for 2-D plane strain

0(x) = — 3 Ra(x) Pa (

in each element.

Powell and Hestenes iterations

As detailed in the problem set on the 2-D Matlab implemeatsgf. Dabrowski et al.20089, iter-
ations are needed to stabilize the solution of the segrédaim for the incompressible problem,
or for largeA.

p°=0 |
while maxAp') > tolerance
d=K-GMIG")HF-Gp) (6.253)
Ap' = —M~1GTd'  — quasi-divergence (6.254)
pt=p'+ap (6.255)
=i+l (6.256)

end
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Figure 6.16: Pressure and velocity solution for a sinking, fluid slab impinging on viscosityrast problem.

6.8 Exercise: Linear incompressible Stokes flow with FE

Reading

e Hugheg(2000, sec. 4.2-4.4

e Dabrowski et al(2008, sec. 4.1.2, 4.3.1, 4.4-4.7

This FE exercise is again based on the MILAMIN packageDaprowski et al.(2008. |
simplified their “mechanical”, incompressible Stokes flglver to reduce the dependency on
packages external to Matlababrowski et al (2008 have a highly optimized version, which you
can obtain from me; it uses,g, reordering of node numbers to improve matrix solutionschhi
comes an important memory issue for larger problems. Thatioatis close tdabrowski et al.
(2008, butHughes2000 has a somewhat clearer exposition.

6.8.1 Implementation of incompressible, Stokes flow

We are interested in the instantaneous solution of a fluillpro in the absence of inertia (infinite
Prandtl number limit), as is appropriate for the Earth’s tiegrfor example (see earlier problem
set, sec6.6). These approximations transform the general, Naviekedt@quation for fluids into
the Stokes equation, which is quite a bit easier to solvealmethere is no turbulence.

USC GEOL540 148 Numerical Geodynamics



CHAPTER 6. FINITE ELEMENTS

The static force-balance equations for body forces dueawaityrare given by
O.-c=f=pg or 0jcij =py, (6.257)

whereo is the stress tensqu,density, andy gravitational acceleratiorg(= gdi;). We assume that
the medium is incompressible and a linear (Newtonian) floistitutive law holds,

Gij = —Pdij + Znéi’j, (6.258)
wheren is the viscosityp pressure, and the deviatoric strain-rate tensor,
. 1 1 1 . . .
Ei/j = V(i,j) — éakvk&j =5 <ajvi —I—aiVj) — éakvkéi,-, or & =¢g—tr(g), (6.259)

wherev are the velocities, and is the total strain-rate reduced by the isotropic part. Ysire
constitutive law, and assuming 2-R-% space), the Stokes equation can be written as (also see
continuum mechanics cheat sheet, 28).

4 2
Ox (n (éaxVx— éazUz)) +0,(N (0% +0xVz)) —0xp = O (6.260)

4 2
az <n (észz — éaxux) ) + ax (I’] (62VX + axvz)) — azp = ng (6261)

Often we write the constitutive law for deviatoric quarggionly,
Tij :Znéi’j with  1jj = gjj + p= 0j; — Okk/3. (6.262)
Incompressibility translates to a constraint on the digarg of the velocity
O-v=0 or 0v;=0, (6.263)
which allows solving eq.§.257) for the additional unknown, pressure. Forv = 0,
tr(¢) =0 — & =¢, (6.264)

but me made the distinction between deviatoric and totalrstiate because we numerically only
approximate the incompressible continuity equation, 8263, by requiring the divergence to
be smaller than some tolerance. There are several appsotcte this €.9.penalty or Lagrange
methods) which typically involve iterations to progrestwintroduce additional “stiffness” to the
medium. We shall allow for a finite, large bulk viscosiky,such that eq.q.263 is approximated

by
OxVx + 02Vz = —E, (6.265)
the right hand side would- 0 for Kk — «. EQq. 6.269 is valid for the incompressible and the
compressible cases. However, for the compressible casgete constitutive law, ed6.259, is
replaced by
Oij = KOKVij + 2n&ij, (6.266)

p cannot be interpreted as the actual presfire,—oj; /3, rather it is a pressure parameter because
P=—(k+2n/3)0ivi and p = —K0o;Vv;. (The general, compressible case is identical to the elasti
formulation wherev — u and the constitutive law igj; = A0yVkdij + Zuéij )
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6.8.2 Problem in strong form
The (finite element) solution is to be found for the probleatexd by eqs.§.257 and 6.265,

djgij+fi = 0 (6.267)
ovi+p/k = 0 (6.268)
with boundary conditions
Vi = g on Iy (6.269)
gijnj = hi on Iy (6.270)

for velocities and tractions, respectively.

Problem in weak form

The pressure equation modifies the stiffness matrix compueh that

Nsd

/dQ Wi)0ij — /dQ q(divi + p/K) = /dQ Wi+ [ drw, (6.271)
| i

with ngg the number of spatial dimensions. We again use the Galegproach, which leads to
the matrix equations.

Matrix assembly

In analogy to the elastic problem, we define a (total) straiB-vectore = {&xx, €22 Yxz = 2€xz}
such that strain-rates on an element level can be compuied fr

é=Bv, (6.272)

wherev are velocities given at the element-local nodes, Briablds the derivatives, as before.
When expressed for the local nodand shape functiony,,

OxNa O

0zNa  OxNa

Likewise, deviatoric stresses can be computed fteaDe, where the property matri® shall be
0
0

given by
D=n ( — ) , (6.274)
1

for a plane-strain approximation (compare the elastic)cases allows to express the stress vector
with pressure part as

O winwI A
O WIAWIN

s=—pm+De, (6.275)
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wherem = {1,1,0}. The deviatoric-only version d is

2 00
D=n| 02 0]. (6.276)
001

In analogy to the displacement, representation for the elastic problem, interpolatedaiel
ties,v, are assumed to be given by the summation over the nodalitresoiimes the shape func-
tions within each element

V(X) ~ ZlNa(x)va. (6.277)

Given the incompressibility constraint, special care lwabéd taken in the choice of shape func-
tions, and we will use the seven-nod&puzeix and Raviar(1973 triangle with quadratic shape
functionsN; (cf. Dabrowski et al. 2008. As detailed inHughes(2000, one can either choose
“conforming” elements for the problem at hand and get a nitet®n for the velocities and pres-
sure right away (which is what we do here), or choose thexaigtiinappropriate shape functions
and later correct the pressured. for so-called “checkerboard modes”). The latter, rougt-an
ready approach may seem less appealing, but works just &8 dahe properly.

A departure from the elastic problem is that the pressune&ed differently fronv, and we
use linear (constant) shape functions for

p(x) = Z Na’(x) Px = Iqa’ Pz, (6.278)
a

whered’ indicates an element-local node, to be distinguished fravhich we use for the velocity
shape function, and the respective total node number pereeliemay be differentg(g.seven for
velocities, one for pressure). This approach is called thxéd formulation”. Correspondingly,
we introduce an isotropic strain operaRy, such that

|:| V= év — vae, (6279)

andp® = —kB\V°®.
The global system of equations for velocit¥, and pressurd?, at the nodes is given by

(35)(%)-(5)

whereF are the load vector®.g.due to body forces, anld is due to the divergence that may be
imposed traction loads for the compressible c&te-(0 for incompressible case).
On an element-level, the stiffness matrix is given by

:
&, = /Q o (g QM> (6.281)
_ /dQ BaDBy —BYN!
Q% -NBy  NaN] /)~
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i.e.Q = —NBy, M= —kINNT, andA corresponds to the total stiffness matkiin the elastic
case. We have omitted the dependence on the local node nimézer6.287).

We avoid having to actually solve for the globalby using the “static condensation”. This
means that we locally (element by element) inWdrto obtain the pressure from

p~ Nppr= NT (M~1Qv®) = —kBW". (6.282)
We can then simplify eq6(28]) to the global, linear equation system
AV =1, (6.283)
which is to be solved for the nodal velocitigs Here,f = {f¢} = {p®g®} and
AN=A+Q"™M Q. (6.284)

A’ is now symmetric and positive-definite, and the regularcieffit matrix solution methods can
be applied. However, the matrix becomes ill-conditionedrdhto invert) for the desired large
values ofk, which is why iterations for the velocity solution are neede order to achieve the
incompressibility constraint. Our example code appliesw®ll and Hestenes” iterations for the
global velocity and pressure vectarsandP (cf. Dabrowski et al. 2008, as in

P _0 i—0 (6.285)
while maxAP') > tolerance
Vi _ (A/)_l(f—QTPi)
AP = MTQV
Pl = P 4AP
i = i+1
end while

If and when the algorithm converges, the pressure correaf®= M~1QV, which depends on the
divergenceM—1QV, goes to zero. Above, all matrices are meant to be the globa&lement-local
representation.

6.8.3 Exercises

(a) Make sure you have the common FE Matlab subroutines flaearlier exercisesp(_-
trianglem , shp _deriv _triangle.m , genereate _mesh.m), and thetriangle  binary in
your working directory.

(b) Download themechanical2d _test2.m driver, and themechanical2d _std.m solver. In-
spect both and compare with the lecture notes and above fdementation. You will have
to fill in the blanks in the driver.
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(c) Compute the sinking velocity of a dense sphere. (lisk in 2-D) with radius 0.1 that is
centered in the middle of thexd 1 box with free-slip boundary conditions (no shear stress
tangentially to the boundary, no motion perpendicular eolibundary) on all sides.

Ensure that the sphere is well resolved by choosing0 points on its circumference and
using a high quality mesh. Use the second order trianglgs(gles on the edges plus one
added in the center), and six integration points.

3.1 Note how boundary conditions are implemented in the &ltatbde, and comment on
essential and natural types.

3.2 Compute the solution for the dense sphere with the saresiig as the background.
Plot the velocities on top of the pressure within the fluid. You nohgose whichever
absolute parameter values you like but will have to be coasisubsequently.

3.3 Change the number of integration points to three, andte@hange the type of ele-
ment to linear, replot. Comment on the velocity and pressolrgien.

3.4 The solver applies a finite bulk viscosity (it should ddor an incompressible flu-
id). For increasing sphere/medium viscosity contrastsargwf 1¢, experiment with
increasing the pseudo-incompressibility and comment erstability of the solution.
After this experiment, reset to the starting value.

3.5 The solver applies iterations to enforce the incomséi$g constrain. Change the
tolerance criterion and comment on the resulting veloaity pressure solutions.

3.6 Change back to seven node triangles with six integratiomts Plot the vertical ve-
locity, v,, along a profile fox € [0;1] atz=0.5.

3.7 Vary the radius of the sphere and comment on howlpofiles are affected by the
size of the sinker relative to the box size. How small doesstiteere have to be to not
feel the effect of the boundaries?

3.8 Change the boundary conditions to no-siip= 0 on all domain edges), replot the
vertical velocity profile for a sphere of radiuslO Comment. Change back to free-slip
subsequently.

3.9 Compute the sinking velocity of a dense sphere with radiiighat is 0.001, 1, and
1,000 times the background viscosity. Define the sinkingaigt as the maximum
velocity at the sphere’s origin at= {0.5,0.5}.

3.10 Provide an analytical estimate for the sinking veiesite.g.check your notes from
earlier in the course) and compare with the numerical estisna

(d) Compute the sinking velocities of a highly elliptical ¢@se ellipticity 0.975, radius 0.25)
body whose viscosity is 1,000 times the background visgositestigate the case where this
“needle” is oriented horizontallyi.e. perpendicular to the sinking velocity at its center) and
when itis oriented verticallyi . aligned with the sinking velocity at its center). Comment on
the difference in the maximum sinking velocity between tle elliptical and the spherical
cases.
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(e) Bonus (somewhat involvedfompute the sinking velocity for a non-Newtonian, powerlaw
fluid with €, O 1]} wheren = 3, and;, indicated the second, shear invariants.

Hints: You will have to convert the constitutive law to a viscosftyr which you can assume
constant strain-rates. Then, you will have to modify theectm compute the strain-rate
tensor to obtain the second invariagt, (You might want to check the elastic exercise for
the use oD andB to obtain strain and stress.) This strain-rate will thereetite viscosity,
and you will have to use a second iteration loop, startingp &itNewtonian viscosity, then
updating the viscosity from the first velocity solution, argbeat until velocities do not
change by more than some tolerance.
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6.9 Time-dependent FE methods

So far, we have only considered static solutions for heatcamtinuum mechanics problems. Fi-
nite elements can also be used to solve dynamic, or time iegoproblems. In analogy to our
treatment of FD methods, the ODE part of the equations (the-tierivative) can be dealt with by

implicit or explicit methods.

Reading Hugheg2000 sec. 7.1, 8.1-8.2

6.9.1 Example: Heat equation

We return to the heat equation as an example of a “parabol s opposed to “hyperbolic”,

e.g.wave propagation problems).

Strong form of the problem

g = —Kij 0T (heat flux)
whereki; is the conductivity matrix.
PCpot T +0iq =H (6.286)
(pcp%—l— —kO?T =H for isotropic conductivity (6.287)
Boundary conditions
T=g only (essential)
—gni=h only (natural)
Initial conditions
T(X,t =0) = To(X) (6.288)
Weak form
(W, pcpT) +aw, T) = (W,H) + (w,h)r (6.289)
(w,pcpT (0)) = (W, pcpTo) (6.290)
- oT
T=0T= i (6.291)
Galerkin approximation, in analogy to static case
T(x,1) ~ v(x.t) +g(x,t) (6.292)
(W, pcpV) +a(w,v) = (W, H) + (w, h)r — (w, pcpg) — a(w, g) (6.293)
(6.294)
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where we have assumed that the spatial derivatives are nowxamated by FE as expressedby
but time is still left continuous,

Matrix assembly

t) = Na(x)da(t) (6.295)

approximation with shape functions
Na for all global nodes

The new matrix equation is

initial condition Md-+Kd=F, d(0) =do (6.296)
with
assembly from element level® : M < m® (6.297)
local nodes a,b : m® = [mS,]
“mass” or“capacity” matrix : mS, = / dQ NapcpNp
Qe
conductivity matrix : K«— K¢ (6.298)
K® = [K)
same as the static case: K&, = / dQ BID By
F = heat supply vector : F«—f® (6.299)
fe=[fg]
from BC's : f€= [ NaH+ dFNah > (K3b 9o + Man o)
Qe
do=M"1d;d — de (6.300)
Initial condition : d®=[d§]

da = /Q _ NapcpTo— 5 Mapg5(0)
(SeeHughes200Q p. 421).

The main difference with the static sets of equation for thatlequation is the introduction of the
M matrix and the need to solve e§.299 as an ODE.

6.9.2 Solution of the semi-discrete heat equation
Solve

Md+Kd=F (6.301)
with IC  d = dg

USC GEOL540 156 Numerical Geodynamics



CHAPTER 6. FINITE ELEMENTS

Note thatM, K are symmetricM is positive definite and is positive semi-definite (not pos. def.
anymore). A general approach to solve e§130]) is by the generalized trapezoidal method (see
Hughes200Q p. 459).

Generalized Trapezoidal Method

Mvn+l+ Kdn+1 — Fn+1
d™l = d" 4 AryHe (6.302)
v = (1— a)v" +av™? (6.303)
whered" andv" are the approximations ti(t = t") andd(t = t"), respectively, with
=" At (6.304)

as for the finite difference method. For the followia® the methods in the table below are recov-
ered.

o

forward Euler, fully explicit
0.5 | midpoint, Crank-Nicolson
1 | backward Euler, fully implicit

v - form implementation
(a) Start at = tg with d = dg given forn=0.

(b) Estimatevg ~ dg from

Mvg = Fo— Kdg (6.305)
(c) Compute predictor
d™ =dn+ (1—a)Atv" (6.306)
Combine eq.4.302 & (6.303 with (6.309
d™l = d"l L aatvtt (6.307)
into eq. 6.30))
(M+aAtKw"t =t _gdgntt (6.308)

(d) Solve eq..308 for v"*+1 (rest is known)

(e) Advanced =t + At and eturn to step 3.

Note that for the fully explicit case witbh = 0 and a “lumped™ matrix (6.309 (i.e. diagonal)
does not involve any equation solving for time-steppikgis lumped forp andcy, constant.
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d - form implementation
Instead of eq.q.309, we use (forx # 0)

1

M an+1
oAt

1
g M-+aat K)d™t=pmly

to obtaind"*1, and then update

n+1 _ Agn+1
Vn+1 _ d —d
a At

The right hand side of eg6(309 is fast to compute for diagon¥.
The generalized trapezoidal methods are % conditionally stable for

2
A< ——
~ (1-2a)h2

(6.309)

(6.310)

(6.311)

whereh is the smallest grid spacing in the me$hX “mesh parameter”). For the fully explicit

method ¢ = 0), we recover

as in the finite difference method.

(6.312)

— Fora > % the method is uncontionally stable. The best accuracytaimdd by the Crank-
Nicolson scheme fon = % the extremes afi = 0 anda = 1 are only first order accurate. It
is therefore a good idea to use thne- % scheme if the equation solving required for implicit

methods is feasible.

— If the complete matrix inversion required for implicit sches is not feasible, the element-by-
element approach d¢flughes(2000 p. 484 (preconditioned conjugate gradient with Crout

factorization) can be used.

— For solutions of wave propagation (hyperbolic and paraboliyperbolic) problems, see

Hugheg(2000, chap. 9.
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